Advanced Search
BAI Guojie, LI Kexin, LIU Wenyuan, LAN Guang, GUO Hong, SUN Yaping, WANG Yu, TONG Weiling, ZHANG Keyu. Comparison of Diagnostic Performance Between PI-RADS v2.1 and PI-RADS v2 for Prostate Cancer: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2023, 50(10): 981-987. DOI: 10.3971/j.issn.1000-8578.2023.23.0223
Citation: BAI Guojie, LI Kexin, LIU Wenyuan, LAN Guang, GUO Hong, SUN Yaping, WANG Yu, TONG Weiling, ZHANG Keyu. Comparison of Diagnostic Performance Between PI-RADS v2.1 and PI-RADS v2 for Prostate Cancer: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2023, 50(10): 981-987. DOI: 10.3971/j.issn.1000-8578.2023.23.0223

Comparison of Diagnostic Performance Between PI-RADS v2.1 and PI-RADS v2 for Prostate Cancer: A Meta-analysis

More Information
  • Corresponding author:

    ZHANG Keyu, E-mail: 15522160289@163.com

  • Received Date: March 08, 2023
  • Revised Date: April 18, 2023
  • Available Online: January 12, 2024
  • Objective 

    To compare the diagnostic performance of PI-RADS v2.1 and PI-RADS v2 in the detection of clinically significant prostate cancer(csPCa) by Meta-analysis.

    Methods 

    The major biomedical databases were searched (CNKI, CBM, Medline, and Embase) with the keywords "PIRADS v2.1" or "PI-RADS v2.1". The Quality Assessment of Diagnostic Accuracy Studies Tool v2 (QUADAS-2) was used to evaluate literature quality. Meta-analysis was performed using STATA17.0 and ReMan5.4 software. Forest plots were used to represent the sensitivity and specificity of PI-RADS v2.1 and PI-RADS v2 for each study. Sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were combined, and diagnostic performance was evaluated using asummary receiver operating characteristic curve (SROC). Subgroup analysis was performed on three covariables: tumor location, threshold, and the nationality of authors.

    Results 

    A total of 12 studies were included, involving 3 158 patients and 3 243 lesions. Forall zones and the whole gland, PI-RADS v2.1 had a larger area under the SROC curve (AUC) for csPCa performance, compared with PI-RADS v2. Subgroup analysis: PI-RADS v2.1 also had a larger area under the SROC (AUC) to detect transitional zone csPCa. Different diagnostic thresholds: when a score of 4 was used for the threshold, PI-RADS v2.1 had the maximum area under SROC (AUC) for csPCa performance detection. Author nationality: Researches of PI-RADS v2.1 in Chinese authors had the largest area under the SROC (AUC) in detecting csPCa performance.

    Conclusion 

    Compared with PI-RADS v2, the diagnostic performance of PI-RADS v2.1 in detecting csPCa is not obviously improved and overall specificity is still low.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Kasivisvanathan V, Stabile A, Neves JB, et al. Magnetic Resonance Imaging-targeted Biopsy Versus Systematic Biopsyin the Detection of Prostate Cancer: A Systematic Review and Metaanalysis[ J]. Eur Urol, 2019, 76(3): 284-303. doi: 10.1016/j.eururo.2019.04.043
    [2]
    Turkbey B, Rosenkrantz AB, Haider MA, et al. Prostate Imaging Reporting and Data System Version 2.1: 2019 Updateof Prostate Imaging Reporting and Data System Version 2[J]. Eur Urol, 2019, 76(3): 340-351. doi: 10.1016/j.eururo.2019.02.033
    [3]
    Linhares Moreira AS, De Visschere P, Van Praet C, et al. How does PI-RADS v2.1 impact patient classification? A head-to-head comparison between PI-RADS v2.0 and v2.1[J]. Acta Radiol, 2021, 62(6): 839-847. doi: 10.1177/0284185120941831
    [4]
    Wang Z, Zhao W, Shen J, et al. PI-RADS version 2.1scoring system is superior in detecting transition zone prostate cancer: adiagnostic study[J]. Abdom Radiol (NY), 2020, 45(12): 4142-4149. doi: 10.1007/s00261-020-02724-y
    [5]
    Oerther B, Engel H, Bamberg F, et al. Cancerdetection rates of the PI-RADSv2.1 assessment categories: systematic review andmetaanalysis on lesion level and patient level[J]. Prostate Cancer Prostatic Dis, 2022, 25(2): 256-263. doi: 10.1038/s41391-021-00417-1
    [6]
    Bhayana R, O'Shea A, Anderson MA, et al. PI-RADS Versions 2 and 2.1: Interobserver Agreementand Diagnostic Performance in Peripheral and Transition Zone Lesions Among Six Radiologists[J]. AJR Am J Roentgenol, 2021, 217(1): 141-151. doi: 10.2214/AJR.20.24199
    [7]
    Byun J, Park KJ, Kim MH, et al. Direct Comparison of PI-RADS Version 2 and2.1 in Transition Zone Lesions for Detection of Prostate Cancer: Preliminary Experience[J]. J Magn Reson Imaging, 2020, 52(2): 577-586. doi: 10.1002/jmri.27080
    [8]
    Hötker AM, Blüthgen C, Rupp NJ, et al. Comparisonof the PIRADS 2.1 scoring system to PI-RADS 2.0: Impact on diagnostic accuracyand inter-reader agreement[J]. PLoS One, 2020, 15(10): e0239975. doi: 10.1371/journal.pone.0239975
    [9]
    Kim HS, Kwon GY, Kim MJ, et al. Prostate Imaging-Reporting and Data System: Comparison of the Diagnostic Performance between Version 2.0 and 2.1 forProstatic Peripheral Zone[J]. Korean J Radiol, 2021, 22(7): 1100-1109. doi: 10.3348/kjr.2020.0837
    [10]
    Kim N, Kim S, Prabhu V, et al. Comparison of Prostate Imaging and Reporting Data SystemV2.0 and V2.1 for Evaluation of Transition Zone Lesions: A 5-Reader 202-Patient Analysis[J]. J Comput Assist Tomogr, 2022, 46(4): 523-529. doi: 10.1097/RCT.0000000000001313
    [11]
    Rudolph MM, Baur ADJ, Cash H, et al. Diagnostic performance of PI-RADS version 2.1 compared to version 2.0 for detection of peripheral and transition zone prostate cancer[J]. Sci Rep, 2020, 10(1): 15982. doi: 10.1038/s41598-020-72544-z
    [12]
    Tamada T, Kido A, Takeuchi M, et al. Comparison of PI-RADS version 2 and PI-RADS version 2.1 for the detection of transition zone prostate cancer[J]. Eur J Radiol, 2019, 121: 108704. doi: 10.1016/j.ejrad.2019.108704
    [13]
    檀双秀, 张跃跃, 王姗, 等. 第2版和第2.1版前列腺影像报告与数据系统对临床显著性前列腺癌诊断效能的比较分析[J]. 中华放射学杂志, 2021, 55(2): 160-165. doi: 10.3760/cma.j.cn112149-20200212-00144

    Tan SX, Zhang YY, Wang S, et al. Comparison of the diagnostic value of prostate imaging reporting and data system version 2 and version 2.1 in the detection of clinically significant prostate cancer[J]. Zhonghua Fang She Xue Za Zhi, 2021, 55(2): 160-165. doi: 10.3760/cma.j.cn112149-20200212-00144
    [14]
    Wei CG, Zhang YY, Pan P, et al. Diagnostic Accuracy and Interobserver Agreement of PI-RADS Version 2 and Version 2.1 for the Detection of Transition Zone Prostate Cancers[J]. AJR Am J Roentgenol, 2021, 216(5): 1247-1256. doi: 10.2214/AJR.20.23883
    [15]
    Xu L, Zhang G, Zhang D, et al. Comparison of PI-RADS version 2.1 and PI-RADS version 2 regardinginterreader variability and diagnostic accuracy for transition zone prostatecancer[J]. Abdom Radiol (NY), 2020, 45(12): 4133-4141. doi: 10.1007/s00261-020-02738-6
    [16]
    张沥, 李陇超, 张鑫, 等. 前列腺影像报告和数据系统2.1版与2版对前列腺癌的诊断价值比较[J]. 临床放射学杂志, 2020, 39(11): 2262-2266. doi: 10.13437/j.cnki.jcr.2020.11.027

    Zhang L, Li LC, Zhang X, et al, Comparison the Diagnostic Value of Prostate Imaging Reporting and Data System Version 2.1 and Version 2[J]. Lin Chuang Fang She Xue Za Zhi, 2020, 39(11): 2262-2266. doi: 10.13437/j.cnki.jcr.2020.11.027
    [17]
    张丹, 朱子超, 宋娜, 等. PI-RADS v2.1和PI-RADS v2对移行带前列腺癌诊断价值的研究[J]. 磁共振成像, 2022, 13(1): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202201011.htm

    Zhang D, Zhu ZC, Song N, et al. Study of PI-RADS v2.1 and PI-RADS v2 for diagnostic value of transition zone prostate cancer[J]. Ci Gong Zhen Cheng Xiang, 2022, 13(1): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-CGZC202201011.htm
    [18]
    Weinreb JC, Barentsz JO, Choyke PL, et al. PI-RADS ProstateImaging- Reporting and Data System: 2015, Version 2[J]. Eur Urol, 2016, 69(1): 16-40. doi: 10.1016/j.eururo.2015.08.052
    [19]
    Padhani AR, Weinreb J, Rosenkrantz AB, et al. Prostate Imaging-Reporting and Data System Steering Committee: PI-RADS v2 Status Update and Future Directions[J]. Eur Urol, 2019, 75(3): 385-396. doi: 10.1016/j.eururo.2018.05.035
    [20]
    Mottet N, van den Bergh RCN, Briers E, et al. EAU-EANMESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent[J]. Eur Urol, 2021, 79(2): 243-262. doi: 10.1016/j.eururo.2020.09.042
    [21]
    Ploussard G, Renard-Penna R. MRI-guided active surveillance in prostatecancer: not yet ready for practice[J]. Nat Rev Urol, 2021, 18(2): 77-78. doi: 10.1038/s41585-020-00416-2
    [22]
    Barrett T, Haider MA. The Emerging Role of MRI in Prostate Cancer Active Surveillance and Ongoing Challenges[J]. AJR Am J Roentgenol, 2017, 208(1): 131-139. doi: 10.2214/AJR.16.16355
    [23]
    Lee CH, Vellayappan B, Tan CH. Comparison of diagnostic performance and inter-reader agreement between PI-RADS v2.1 and PI-RADS v2: systematic review and meta-analysis[J]. Br J Radiol, 2022, 95(1131): 20210509. doi: 10.1259/bjr.20210509
    [24]
    Park KJ, Choi SH, Kim MH, et al. Performance of Prostate Imaging Reporting and Data System Version 2.1 for Diagnosis of Prostate Cancer: A Systematic Review and Meta-Analysis[J]. J Magn Reson Imaging, 2021, 54(1): 103-112. doi: 10.1002/jmri.27546
  • Related Articles

    [1]LI Basen, LIU Liangjin, RUAN Yajun, TAN Fangqin, LI Qin, HAN Yunfeng. Evaluation of Therapeutic Response to Endocrine Therapy for Prostate Cancer by MRI Diffusion-weighted Imaging Based on PI-RADSv2.1[J]. Cancer Research on Prevention and Treatment, 2023, 50(7): 694-699. DOI: 10.3971/j.issn.1000-8578.2023.22.1396
    [2]ZENG Chunyuan, CHENG Yong, XU Hao. Diagnostic Value of 18F-labeled PSMA PET/CT for Regional Lymph Node Metastasis in Prostate Cancer: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2022, 49(2): 141-147. DOI: 10.3971/j.issn.1000-8578.2022.21.0752
    [3]LIU Jinzhao, ZHANG Xiangmei, ZHOU Yarong, LIU Yunjiang. Risk of Primary Lung Cancer in Breast Cancer Patients: A Systematic Review and Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2021, 48(7): 733-737. DOI: 10.3971/j.issn.1000-8578.2021.20.1430
    [4]LIAO Yiran, ZHANG Qiuning, SHAO Lihua, LIU Ruifeng, LUO Hongtao, WANG Lina, FENG Shuangwu, YANG Kehu, WANG Xiaohu. Safety and Efficacy of Carbon Ion and Proton Therapies for Pancreatic Cancer: A Systematic Review and Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2020, 47(7): 504-510. DOI: 10.3971/j.issn.1000-8578.2020.19.1482
    [5]CUI Gang, YAN Bin, TAO Yongguang. Effect of FDG-PET/CT in Diagnosis, Staging and Prognosis of Pancreatic Cancer: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2017, 44(3): 202-208. DOI: 10.3971/j.issn.1000-8578.2017.03.010
    [6]TAN Yi, LIU Yan, SONG Yuwei, CHEN Qiufang, TAN Guoqiang, GUI Xiujuan, LIN Shaoqiang. Prognostic Value of Circulating Tumor Cells for Metastatic Prostate Cancer: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2016, 43(9): 783-788. DOI: 10.3971/j.issn.1000-8578.2016.09.011
    [7]CAO Lingzhi, XIE Jianping, PENG Xiaodong, WEN Huling, LI Suping, YANG Yaowu. Association of Iodine Intake and Iodine-enriched Food with Risk of Thyroid Cancer: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2016, 43(7): 616-622. DOI: 10.3971/j.issn.1000-8578.2016.07.015
    [8]WANG Chunlin, HUANG Shengxin, CHENG Xiaowei, ZHANG Yong. Association of Vascular Endothelial Growth Factor Gene+936C/T Polymorphisms with Breast Cancer: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2013, 40(05): 489-494. DOI: 10.3971/j.issn.1000-8578.2013.05.019
    [9]YANG Zhen-yu, ZHANG Xu, SHENG Chang. Meta-analysis of Association of 8q24 rs1447295A/C Polymorphism and Risk of Prostate Cancer in Asian Men [J]. Cancer Research on Prevention and Treatment, 2011, 38(06): 706-708. DOI: 10.3971/j.issn.1000-8578.2011.06.027
    [10]SU Han wen, LI Yan, XU Pu. The study of diagnosis of complexed prostate-specific antigen for prostate cancer[J]. Cancer Research on Prevention and Treatment, 2003, 30(03): 198-199. DOI: 10.3971/j.issn.1000-8578.2730

Catalog

    Figures(4)  /  Tables(3)

    Article views (1650) PDF downloads (459) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return