Advanced Search
GUO Xin, DU Hua, SHI Yingxu. Exosomal Delivery of Non-coding RNA Regulates Breast Bancer Drug Resistance[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 1071-1076. DOI: 10.3971/j.issn.1000-8578.2022.22.0142
Citation: GUO Xin, DU Hua, SHI Yingxu. Exosomal Delivery of Non-coding RNA Regulates Breast Bancer Drug Resistance[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 1071-1076. DOI: 10.3971/j.issn.1000-8578.2022.22.0142

Exosomal Delivery of Non-coding RNA Regulates Breast Bancer Drug Resistance

Funding: 

Natural Science Foundation of Inner Mongolia Autonomous Region 2019LH08032

Natural Science Foundation of lnner Mongolia Autonomous Region 2021MS08093

"Young Science and Technology Talents" Support Program for Higher Education Institutions in Inner Mongolia Autonomous Region NJYT-18-B18

Inner Mongolia Medical University Zhiyuan Talent Program-Good Learning Talents ZY0202020

2021 Inner Mongolia Medical University School-level Key Project YKD2021ZD007

General Program of Inner Mongolia Medical University YKD2021MS006

Inner Mongolia Medical University Education Reform Project NYJXGG2021026

More Information
  • Corresponding author:

    SHI Yingxu, E-mail: shiyingxu@126.com

  • Received Date: February 20, 2022
  • Revised Date: March 30, 2022
  • Available Online: January 12, 2024
  • Drug resistance is a major challenge in the treatment of breast cancer. Many causes and mechanisms lead to the occurrence of drug resistance in breast cancer. Exosomes and their contents (DNA, mRNA, protein, and non-coding RNA) are important mediators of intercellular communication and play a role in tumor progression, metastasis, and recurrence. Among them, non-coding RNA carried by exosomes plays a crucial role in limiting drug efficacy. This article reviews the latest research progress on the relationship between exosomal non-coding RNA and drug resistance of breast cancer at home and abroad.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Wilkinson L, Gathani T. Understanding breast cancer as a global health concern[J]. Br J Radiol, 2022, 95(1130): 20211033. doi: 10.1259/bjr.20211033
    [2]
    Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016[J]. J Natl Cancer Cent, 2022, 2(1): 1-9. doi: 10.1016/j.jncc.2022.02.002
    [3]
    Han M, Gu Y, Lu P, et al. Exosome-mediated lncRNA AFAP1-AS1 promotes trastuzumab resistance through binding with AUF1 and activating ERBB2 translation[J]. Mol Cancer, 2020, 19(1): 26. doi: 10.1186/s12943-020-1145-5
    [4]
    Liang G, Zhu Y, Ali DJ, et al. Engineered exosomes for targeted co-delivery of miR-21 inhibitor and chemotherapeutics to reverse drug resistance in colon cancer[J]. J Nanobiotechnology, 2020, 18(1): 10. doi: 10.1186/s12951-019-0563-2
    [5]
    Gerard L, Duvivier L, Gillet JP. Targeting tumor resistance mechanisms[J]. Fac Rev, 2021, 10: 6.
    [6]
    Patel NH, Xu J, Saleh T, et al. Influence of nonprotective autophagy and the autophagic switch on sensitivity to cisplatin in non-small cell lung cancer cells[J]. Biochem Pharmacol, 2020, 175: 113896. doi: 10.1016/j.bcp.2020.113896
    [7]
    Tsubata Y, Tanino R, Isobe T. Current Therapeutic Strategies and Prospects for EGFR Mutation-Positive Lung Cancer Based on the Mechanisms Underlying Drug Resistance[J]. Cells, 2021, 10(11): 3192. doi: 10.3390/cells10113192
    [8]
    Su D. MCM7 affects the cisplatin resistance of liver cancer cells and the development of liver cancer by regulating the PI3K/Akt signaling pathway[J]. Immunopharmacol Immunotoxicol, 2022, 44(1): 17-27. doi: 10.1080/08923973.2021.1991372
    [9]
    Wang JQ, Wang B, Ma LY, et al. Enhancement of anticancer drug sensitivity in multidrug resistance cells overexpressing ATP-binding cassette (ABC) transporter ABCC10 by CP55, a synthetic derivative of 5-cyano-6-phenylpyrimidin[J]. Exp Cell Res, 2021, 405(2): 112728. doi: 10.1016/j.yexcr.2021.112728
    [10]
    Choi JD, Kim TJ, Jeong BC, et al. ISL1 promotes enzalutamide resistance in castration-resistant prostate cancer (CRPC) through epithelial to mesenchymal transition (EMT)[J]. Sci Rep, 2021, 11(1): 21984. doi: 10.1038/s41598-021-01003-0
    [11]
    Nickoloff JA, Taylor L, Sharma N, et al. Exploiting DNA repair pathways for tumor sensitization, mitigation of resistance, and normal tissue protection in radiotherapy[J]. Cancer Drug Resist, 2021, 4(2): 244-263.
    [12]
    Goh CY, Wyse C, Ho M, et al. Exosomes in triple negative breast cancer: Garbage disposals or Trojan horses?[J]. Cancer Lett, 2020, 473: 90-97. doi: 10.1016/j.canlet.2019.12.046
    [13]
    Yang Q, Zhao S, Shi Z, et al. Chemotherapy-elicited exosomal miR-378a-3p and miR-378d promote breast cancer stemness and chemoresistance via the activation of EZH2/STAT3 signaling[J]. J Exp Clin Cancer Res, 2021, 40(1): 120. doi: 10.1186/s13046-021-01901-1
    [14]
    Han M, Hu J, Lu P, et al. Exosome-transmitted miR-567 reverses trastuzumab resistance by inhibiting ATG5 in breast cancer[J]. Cell Death Dis, 2020, 11(1): 43. doi: 10.1038/s41419-020-2250-5
    [15]
    Zhao Y, Jin LJ, Zhang XY. Exosomal miRNA-205 promotes breast cancer chemoresistance and tumorigenesis through E2F1[J]. Aging (Albany NY), 2021, 13(14): 18498-18514.
    [16]
    Liu J, Zhu S, Tang W, et al. Exosomes from tamoxifen-resistant breast cancer cells transmit drug resistance partly by delivering miR-9-5p[J]. Cancer Cell Int, 2021, 21(1): 55. doi: 10.1186/s12935-020-01659-0
    [17]
    Jia Z, Zhu H, Sun H, et al. Adipose Mesenchymal Stem Cell-Derived Exosomal microRNA-1236 Reduces Resistance of Breast Cancer Cells to Cisplatin by Suppressing SLC9A1 and the Wnt/β-Catenin Signaling[J]. Cancer Manag Res, 2020, 12: 8733-8744. doi: 10.2147/CMAR.S270200
    [18]
    Pan X, Hong X, Lai J, et al. Exosomal MicroRNA-221-3p Confers Adriamycin Resistance in Breast Cancer Cells by Targeting PIK3R1[J]. Front Oncol, 2020, 10: 441. doi: 10.3389/fonc.2020.00441
    [19]
    Yu DD, Wu Y, Zhang XH, et al. Exosomes from adriamycin-resistant breast cancer cells transmit drug resistance partly by delivering miR-222[J]. Tumour Biol, 2016, 37(3): 3227-3235. doi: 10.1007/s13277-015-4161-0
    [20]
    Li XJ, Ren ZJ, Tang JH, et al. Exosomal MicroRNA MiR-1246 Promotes Cell Proliferation, Invasion and Drug Resistance by Targeting CCNG2 in Breast Cancer[J]. Cell Physiol Biochem, 2017, 44(5): 1741-1748. doi: 10.1159/000485780
    [21]
    Santos JC, Lima NDS, Sarian LO, et al. Exosome-mediated breast cancer chemoresistance via miR-155 transfer[J]. Sci Rep, 2018, 8(1): 829. doi: 10.1038/s41598-018-19339-5
    [22]
    Qian X, Qu H, Zhang F, et al. Exosomal long noncoding RNA AGAP2-AS1 regulates trastuzumab resistance via inducing autophagy in breast cancer[J]. Am J Cancer Res, 2021, 11(5): 1962-1981.
    [23]
    Zheng Z, Chen M, Xing P, et al. Increased Expression of Exosomal AGAP2-AS1 (AGAP2 Antisense RNA 1) In Breast Cancer Cells Inhibits Trastuzumab-Induced Cell Cytotoxicity[J]. Med Sci Monit, 2019, 25: 2211-2220. doi: 10.12659/MSM.915419
    [24]
    Wang X, Pei X, Guo G, et al. Exosome-mediated transfer of long noncoding RNA H19 induces doxorubicin resistance in breast cancer[J]. J Cell Physiol, 2020, 235(10): 6896-6904. doi: 10.1002/jcp.29585
    [25]
    Dong H, Wang W, Chen R, et al. Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer[J]. Int J Oncol, 2018, 53(3): 1013-1026.
    [26]
    Yu Q, Li Y, Peng S, et al. Exosomal-mediated transfer of OIP5-AS1 enhanced cell chemoresistance to trastuzumab in breast cancer via up-regulating HMGB3 by sponging miR-381-3p[J]. Open Med (Wars), 2021, 16(1): 512-525. doi: 10.1515/med-2021-0249
    [27]
    董正远. 外泌体lncRNAH19调控miR-340-3p诱导乳腺癌紫杉醇耐药的研究[D]. 蚌埠医学院, 2021.

    Dong ZY. Exosomal lncRNAH19 regulates miR-340-3p to induce paclitaxel resistance in breast cancer[D]. Bengbu Medical College, 2021.
    [28]
    Hu K, Liu X, Li Y, et al. Exosomes Mediated Transfer of Circ_UBE2D2 Enhances the Resistance of Breast Cancer to Tamoxifen by Binding to MiR-200a-3p[J]. Med Sci Monit, 2020, 26: e922253.
    [29]
    Zhang H, Yan C, Wang Y. Exosome-mediated transfer of circHIPK3 promotes trastuzumab chemoresistance in breast cancer[J]. J Drug Target, 2021, 29(9): 1004-1015. doi: 10.1080/1061186X.2021.1906882
    [30]
    Lin Q, Zhou CR, Bai MJ, et al. Exosome-mediated miRNA delivery promotes liver cancer EMT and metastasis[J]. Am J Transl Res, 2020, 12(3): 1080-1095.
    [31]
    Usman RM, Razzaq F, Akbar A, et al. Role and mechanism of autophagy-regulating factors in tumorigenesis and drug resistance[J]. Asia Pac J Clin Oncol, 2021, 17(3): 193-208. doi: 10.1111/ajco.13449
    [32]
    Wen N, Lv Q, Du ZG. MicroRNAs involved in drug resistance of breast cancer by regulating autophagy[J]. J Zhejiang Univ Sci B, 2020, 21(9): 690-702. doi: 10.1631/jzus.B2000076
    [33]
    Spear JM, Lu Z, Russu WA. Pharmacological Inhibition of CDK8 in Triple-Negative Breast Cancer Cell Line MDA-MB-468 Increases E2F1 Protein, Induces Phosphorylation of STAT3 and Apoptosis[J]. Molecules, 2020, 25(23): 5728. doi: 10.3390/molecules25235728
    [34]
    Zhang M, Wang F, Xiang Z, et al. LncRNA XIST promotes chemoresistance of breast cancer cells to doxorubicin by sponging miR-200c-3p to upregulate ANLN[J]. Clin Exp Pharmacol Physiol, 2020, 47(8): 1464-1472. doi: 10.1111/1440-1681.13307
    [35]
    Zhong Z, Virshup DM. Wnt Signaling and Drug Resistance in Cancer[J]. Mol Pharmacol, 2020, 97(2): 72-89. doi: 10.1124/mol.119.117978
    [36]
    Bian P, Dou Z, Jia Z, et al. Activated Wnt/β-Catenin signaling contributes to E3 ubiquitin ligase EDD-conferred docetaxel resistance in prostate cancer[J]. Life Sci, 2020, 254: 116816. doi: 10.1016/j.lfs.2019.116816
    [37]
    Below M, Osipo C. Notch Signaling in Breast Cancer: A Role in Drug Resistance[J]. Cells, 2020, 9(10): 2204. doi: 10.3390/cells9102204
    [38]
    Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer[J]. Int J Mol Sci, 2021, 22(20): 11088. doi: 10.3390/ijms222011088
    [39]
    Liu R, Chen Y, Liu G, et al. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers[J]. Cell Death Dis, 2020, 11(9): 797. doi: 10.1038/s41419-020-02998-6
    [40]
    Zhou X, Wang L, Zou W, et al. hnRNPA2B1 Associated with Recruitment of RNA into Exosomes Plays a Key Role in Herpes Simplex Virus 1 Release from Infected Cells[J]. J Virol, 2020, 94(13): e00367-20.
    [41]
    Senichkin VV, Pervushin NV, Zuev AP, et al. Targeting Bcl-2 Family Proteins: What, Where, When?[J]. Biochemistry (Mosc), 2020, 85(10): 1210-1226. doi: 10.1134/S0006297920100090
    [42]
    梁新丽, 徐希强, 董伟, 等. 外泌体来源的非编码RNA介导肿瘤耐药研究进展[J]. 国际药学研究杂志, 2020, 47(3): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYZ202003001.htm

    Liang XL, Xu XQ, Dong W, et al. Exosome-derived non-coding RNA-mediated chemotherapy resistance in cancer: research advances[J]. Guo Ji Yao Xue Yan Jiu Za Zhi, 2020, 47(3): 163-168. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYZ202003001.htm
    [43]
    Li Y, Feng W, Kong M, et al. Exosomal circRNAs: A new star in cancer[J]. Life Sci, 2021, 269: 119039. doi: 10.1016/j.lfs.2021.119039
    [44]
    郭马娣, 赵娟, 黄小义. 以外泌体为基础的液体活检在胰腺癌诊断中的研究进展[J]. 肿瘤防治研究, 2022, 49(3): 240-245. doi: 10.3971/j.issn.1000-8578.2022.21.1008

    Guo MD, Zhao J, Huang XY. Research Progress of Exosome-based Liquid Biopsy in Diagnosis of Pancreatic Cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(3): 240-245. doi: 10.3971/j.issn.1000-8578.2022.21.1008
  • Related Articles

    [1]KONG Yan, GAO Hongmei. Long Outcome of Radiotherapy for Esophageal Carcinoma and Efficacy Comparison of Different Treatment Methods[J]. Cancer Research on Prevention and Treatment, 2015, 42(01): 56-61. DOI: 10.3971/j.issn.1000-8578.2015.01.014
    [2]ZHANG Yanli, ZHU Shunqin, LIU Yaling, CUI Hongjuan. 恶性黑色素瘤内科治疗研究进展[J]. Cancer Research on Prevention and Treatment, 2014, 41(01): 74-78. DOI: 10.3971/j.issn.1000-8578.2014.01.017
    [3]YU Zhi-ying, ZHOU Ju-ying, XU Chang-shao, et al. Analysis of radiotherapy of tongue carcinoma of 60 cases[J]. Cancer Research on Prevention and Treatment, 2003, 30(04): 326-327. DOI: 10.3971/j.issn.1000-8578.1412
    [4]XU Su ling, JI Jun, ZHANG Jin rong, et al. Radiotherapy combined with biotherapy for Classic Kaposi~, s sarcoma[J]. Cancer Research on Prevention and Treatment, 2003, 30(01): 55-57. DOI: 10.3971/j.issn.1000-8578.82
    [5]ZANG Ai-hua, PAO Jian-hua, WANG Zhi-jun, et al. The effect of kang Lai-te injection and multimodality therapy in primary lung cancer[J]. Cancer Research on Prevention and Treatment, 2000, 27(04): 287-288. DOI: 10.3971/j.issn.1000-8578.1390
    [6]LI Fang-ming, YUAN Zhuo-ting, KANG Jing-bo, . Radiotherapy for Carcinoma of the Esophagus in the Elderly Patients[J]. Cancer Research on Prevention and Treatment, 1999, 26(5): 374-375.
    [7]Tang Rongxiang, . Radiotherapy of stage Ⅱ carcinoma of The Mammary Gland[J]. Cancer Research on Prevention and Treatment, 1995, 22(3): 180-181.
    [8]Xiao xiaowei, . Radiotherapy of Stage B Non-Hodgkin' s lymphoma in Nose-Analysis of 68 Patients[J]. Cancer Research on Prevention and Treatment, 1995, 22(1): 49-50.
    [9]Li changqing, . randomized trial of combined chemotherapy including highdose cisplatin and radiotherapy for nasopharyngeal carcinoma[J]. Cancer Research on Prevention and Treatment, 1995, 22(1): 39-40.
    [10]Lu Jun-ji. COMBINED THERAPY TREATMENT OF LIMBES' RHABDOMYOSACOMA REPORT OF 45 CASES[J]. Cancer Research on Prevention and Treatment, 1994, 21(1): 54-56.

Catalog

    Figures(1)  /  Tables(1)

    Article views (1745) PDF downloads (764) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return