Advanced Search
HOU Jian, WANG Junying. Research Progress of Immune Microenvironment in Multiple Myeloma[J]. Cancer Research on Prevention and Treatment, 2022, 49(5): 375-378. DOI: 10.3971/j.issn.1000-8578.2022.21.1427
Citation: HOU Jian, WANG Junying. Research Progress of Immune Microenvironment in Multiple Myeloma[J]. Cancer Research on Prevention and Treatment, 2022, 49(5): 375-378. DOI: 10.3971/j.issn.1000-8578.2022.21.1427

Research Progress of Immune Microenvironment in Multiple Myeloma

More Information
  • Received Date: December 06, 2021
  • Revised Date: March 11, 2022
  • Available Online: January 12, 2024
  • Multiple myeloma is one type of hematological malignancy, characterized by the proliferation and accumulation of monoclonal plasma cells in bone marrow. Bone marrow microenvironment plays a key supporting role in the proliferation and survival of myeloma cells, where a large number of immune cells exist but are functionally suppressed. Based on the studies of myeloma immune microenvironment in recent years, we summarize the recent advances and existing problems in the treatment of multiple myeloma and put forward some considerations and suggestions, to provide references for researchers in this field.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    van de Donk NWCJ, Pawlyn C, Yong KL. Multiple Myeloma[J]. Lancet, 2021, 397(10272): 410-427. doi: 10.1016/S0140-6736(21)00135-5
    [2]
    Moreau P. How I Treat Myeloma with New Agents[J]. Blood, 2017, 130(13): 1507-1513. doi: 10.1182/blood-2017-05-743203
    [3]
    Shah UA, Mailankody S. Emerging Immunotherapies in Multiple Myeloma[J]. BMJ, 2020, 370: m3176.
    [4]
    Holthof LC, Mutis T. Challenges for Immunotherapy in Multiple Myeloma: Bone Marrow Microenvironment-Mediated Immune Suppression and Immune Resistance[J]. Cancers (Basel), 2020, 12(4): 998. doi: 10.3390/cancers12040998
    [5]
    García-Ortiz A, Rodríguez-García Y, Encinas J, et al. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression[J]. Cancers (Basel), 2021, 13(2): 217. doi: 10.3390/cancers13020217
    [6]
    Nakamura K, Smyth MJ, Martinet L. Cancer Immunoediting and Immune Dysregulation in Multiple Myeloma[J]. Blood, 2020, 136(24): 2731-2740. doi: 10.1182/blood.2020006540
    [7]
    Rajkumar SV, Landgren O, Mateos MV. Smoldering Multiple Myeloma[J]. Blood, 2015, 125(20): 3069-3075. doi: 10.1182/blood-2014-09-568899
    [8]
    Dhodapkar MV. MGUS to Myeloma: A Mysterious Gammopathy of Underexplored Significance[J]. Blood, 2016, 128(23): 2599-2606. doi: 10.1182/blood-2016-09-692954
    [9]
    Mouhieddine TH, Weeks LD, Ghobrial IM. Monoclonal Gammopathy of Undetermined Significance[J]. Blood, 2019, 133(23): 2484-2494. doi: 10.1182/blood.2019846782
    [10]
    Bailur JK, McCachren SS, Doxie DB, et al. Early Alterations in Stem-like/resident T Cells, Innate and Myeloid Cells in the Bone Marrow in Preneoplastic Gammopathy[J]. JCI Insight, 2019, 5(11): e127807.
    [11]
    Dhodapkar MV, Dhodapkar KM. Tissue-resident Memory-like T Cells in Tumor Immunity: Clinical implications[J]. Semin Immunol, 2020, 49: 101415. doi: 10.1016/j.smim.2020.101415
    [12]
    Zelle-Rieser C, Thangavadivel S, Biedermann R, et al. T cells in Multiple Myeloma Display Features of Exhaustion and Senescence at the Tumor Site[J]. J Hematol Oncol, 2016, 9(1): 116. doi: 10.1186/s13045-016-0345-3
    [13]
    Botta C, Mendicino F, Martino EA, et al. Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities[J]. Cancers (Basel), 2021, 13(13): 3213. doi: 10.3390/cancers13133213
    [14]
    Lopes R, Caetano J, Ferreira B, et al. The Immune Microenvironment in Multiple Myeloma: Friend or Foe?[J]. Cancers (Basel), 2021, 13(4): 625. doi: 10.3390/cancers13040625
    [15]
    Janker L, Mayer RL, Bileck A, et al. Metabolic, Anti-apoptotic and Immune Evasion Strategies of Primary Human Myeloma Cells Indicate Adaptations to Hypoxia[J]. Mol Cell Proteomics, 2019, 18(5): 936-953. doi: 10.1074/mcp.RA119.001390
    [16]
    Wu S, Kuang H, Ke J, et al. Metabolic Reprogramming Induces Immune Cell Dysfunction in the Tumor Microenvironment of Multiple Myeloma[J]. Front Oncol, 2021, 10: 591342. doi: 10.3389/fonc.2020.591342
    [17]
    McCachren SS, Dhodapkar KM, Dhodapkar MV. Co-evolution of Immune Response in Multiple Myeloma: Implications for Immune Prevention[J]. Front Immunol, 2021, 12: 632564. doi: 10.3389/fimmu.2021.632564
    [18]
    Tamura H, Ishibashi M, Sunakawa-Kii M, et al. PD-L1-PD-1 Pathway in the Pathophysiology of Multiple Myeloma[J]. Cancers (Basel), 2020, 12(4): 924. doi: 10.3390/cancers12040924
    [19]
    Schreiber RD, Old LJ, Smyth MJ. Cancer Immunoediting: Integrating Immunity's Roles in Cancer Suppression and Promotion[J]. Science, 2011, 331(6024): 1565-1570. doi: 10.1126/science.1203486
    [20]
    Guillerey C, Ferrari de Andrade L, Vuckovic S, et al. Immunosurveillance and Therapy of Multiple Myeloma Are CD226 Dependent[J]. J Clin Invest, 2015, 125(5): 2077-2089. doi: 10.1172/JCI77181
    [21]
    Minnie SA, Kuns RD, Gartlan KH, et al. Myeloma Escape After Stem Cell Transplantation Is A Consequence of T-cell Exhaustion and Is Prevented by TIGIT Blockade[J]. Blood, 2018, 132(16): 1675-1688. doi: 10.1182/blood-2018-01-825240
    [22]
    Goodyear OC, Pratt G, McLarnon A, et al. Differential Pattern of CD4+ and CD8+ T-cell Immunity to MAGE-A1/A2/A3 in Patients with Monoclonal Gammopathy of Undetermined Significance (MGUS) and Multiple Myeloma[J]. Blood, 2008, 112(8): 3362-3372. doi: 10.1182/blood-2008-04-149393
    [23]
    Yamamoto L, Amodio N, Gulla A, et al. Harnessing the Immune System Against Multiple Myeloma: Challenges and Opportunities[J]. Front Oncol, 2021, 10: 606368. doi: 10.3389/fonc.2020.606368
    [24]
    van de Donk NWCJ, Usmani SZ. CD38 Antibodies in Multiple Myeloma: Mechanisms of Action and Modes of Resistance[J]. Front Immunol, 2018, 9: 2134. doi: 10.3389/fimmu.2018.02134
    [25]
    Romano A, Storti P, Marchica V, et al. Mechanisms of Action of the New Antibodies in Use in Multiple Myeloma[J]. Front Oncol, 2021, 11: 684561. doi: 10.3389/fonc.2021.684561
    [26]
    Nishida H. Rapid Progress in Immunotherapies for Multiple Myeloma: An Updated Comprehensive Review[J]. Cancers (Basel), 2021, 13(11): 2712. doi: 10.3390/cancers13112712
    [27]
    Minnie SA, Hill GR. Immunotherapy of Multiple Myeloma[J]. J Clin Invest, 2020, 130(4): 1565-1575. doi: 10.1172/JCI129205
    [28]
    Sperling AS, Anderson KC. Facts and Hopes in Multiple Myeloma Immunotherapy[J]. Clin Cancer Res, 2021, 27(16): 4468-4477. doi: 10.1158/1078-0432.CCR-20-3600
    [29]
    Franssen LE, Stege CAM, Zweegman S, et al. Resistance Mechanisms Towards CD38-Directed Antibody Therapy in Multiple Myeloma[J]. J Clin Med, 2020, 9(4): 1195. doi: 10.3390/jcm9041195
    [30]
    D'Agostino M, Raje N. Anti-BCMA CAR T-cell Therapy in Multiple Myeloma: Can We Do Better?[J]. Leukemia, 2020, 34(1): 21-34. doi: 10.1038/s41375-019-0669-4
    [31]
    Kawano Y, Roccaro AM, Ghobrial IM, et al. Multiple Myeloma and the Immune Microenvironment[J]. Curr Cancer Drug Targets, 2017, 17(9): 806-818.
    [32]
    Manier S, Salem KZ, Park J, et al. Genomic Complexity of Multiple Myeloma and Its Clinical Cmplications[J]. Nat Rev Clin Oncol, 2017, 14(2): 100-113. doi: 10.1038/nrclinonc.2016.122
  • Related Articles

    [1]ZHANG Zhipeng, TIAN Jianhui, QUE Zujun, CHEN Ziqi, LUO Bin, LIU Shihui. Modified Maimendong Decoction Inhibits Lung Cancer Metastasis by Up-Regulating Levels of NK and CD8+ T Cells in Peripheral Blood and Tumor Microenvironment[J]. Cancer Research on Prevention and Treatment, 2025, 52(6): 466-473. DOI: 10.3971/j.issn.1000-8578.2025.24.0678
    [2]LI Yangqiu. Strategy of Targeted T Cell Immunotherapy for Acute Myeloid Leukemia[J]. Cancer Research on Prevention and Treatment, 2024, 51(4): 229-233. DOI: 10.3971/j.issn.1000-8578.2024.24.0016
    [3]SUN Jiaqi, WANG Yudong. Treatment Strategy and Research Progress of Immune Microenvironment for Liver Metastasis of Non-small Cell Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2024, 51(3): 203-209. DOI: 10.3971/j.issn.1000-8578.2024.23.0878
    [4]HU Run, YAO Pei, LI Junen, GUI Renjie, DUAN Huaxin. Research Progress of Chimeric Antigen Receptor NK Cells in Treatment of Lymphoma[J]. Cancer Research on Prevention and Treatment, 2023, 50(12): 1243-1248. DOI: 10.3971/j.issn.1000-8578.2023.23.0664
    [5]ZENG Linshu, FENG Xiaoli. Research Progress of Extranodal NK/T Cell Lymphoma[J]. Cancer Research on Prevention and Treatment, 2016, 43(1): 87-90. DOI: 10.3971/j.issn.1000-8578.2016.01.019
    [6]Song Li. Correlation Analysis of T Lymphocyte Subsets and NK Cell in Peripheral Blood and Clinical Stage of Cervical Cancer[J]. Cancer Research on Prevention and Treatment, 2013, 40(02): 177-179. DOI: 10.3971/j.issn.1000-8578.2013.02.013
    [7]DONG Zhen, NIU Hong-quan, DONG Fang-yong, LI Chun-lin, LEI Ting, XUE De-lin. Alterations of T Cell Subpopulation in Gl ioma Patients Received Autologous Immunotherapy[J]. Cancer Research on Prevention and Treatment, 2005, 32(12): 782-784. DOI: 10.3971/j.issn.1000-8578.1542
    [8]LUO Jun, JIN Feng-shuo, LI Qian-shen, JIANG Jun, GAO Lin. The Role of Bladder Cancer Cell in T Cell Functional Inhibition in Vitro[J]. Cancer Research on Prevention and Treatment, 2004, 31(03): 148-150. DOI: 10.3971/j.issn.1000-8578.1085
    [9]HUANG Zhao-hui, WANG Feng, LIU Zhi-hui, et al, . Study on efficient expansion of human cytotoxic CD3-CD56+NK cells from peripheral blood[J]. Cancer Research on Prevention and Treatment, 2004, 31(01): 36-38. DOI: 10.3971/j.issn.1000-8578.714
    [10]WU Jun, YANG Tai-cheng, LAI Huang-wen, et al, . Induction of CEA-Specific cytotoxic T lymphocytes by dendritic cells transfected with CEA-recombinant vaccinia virus[J]. Cancer Research on Prevention and Treatment, 2002, 29(05): 353-355. DOI: 10.3971/j.issn.1000-8578.795
  • Cited by

    Periodical cited type(5)

    1. 胡雨荷, 臧云彩, 李姗, 王颖睿, 申昕, 孙婷婷, 郑玉玲. 整合医学下基于圆运动及一气周流理论论治喉癌. 中医学报. 2025(08)
    2. 刘川,马玮,王志海,李彦仕,潘敏,曾泉,胡国华. pT3N0期喉鳞癌的临床治疗策略. 临床耳鼻咽喉头颈外科杂志. 2025(01): 61-65 .
    3. 彭丽娜,武川军,要兆旭,赵倩,韩海平. 沉默miR-373对喉癌细胞增殖、凋亡能力的影响及作用机制研究. 中国耳鼻咽喉头颈外科. 2024(06): 346-350 .
    4. 张寒,张胜利,祖媛媛. 声门上型喉癌手术患者预后的预测模型构建. 国际医药卫生导报. 2024(11): 1796-1801 .
    5. 郭珊珊,杨文婧,许丽萍,陶倩,王欢,王书谦. 喉癌治疗后复发的影响因素分析及预测模型构建. 山东医药. 2023(33): 27-31 .

    Other cited types(0)

Catalog

    Article views (2650) PDF downloads (2218) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return