Advanced Search
ZHENG Weibin, ZHANG Boya, YIN Xiaochen, WANG Xin, ZHAO Qinjian. Research Progress of Anti-cancer Drug Delivery System Based on Silica Nanoparticles[J]. Cancer Research on Prevention and Treatment, 2020, 47(2): 135-140. DOI: 10.3971/j.issn.1000-8578.2020.19.0785
Citation: ZHENG Weibin, ZHANG Boya, YIN Xiaochen, WANG Xin, ZHAO Qinjian. Research Progress of Anti-cancer Drug Delivery System Based on Silica Nanoparticles[J]. Cancer Research on Prevention and Treatment, 2020, 47(2): 135-140. DOI: 10.3971/j.issn.1000-8578.2020.19.0785

Research Progress of Anti-cancer Drug Delivery System Based on Silica Nanoparticles

More Information
  • Corresponding author:

    ZHAO Qinjian, E-mail:qinjian_zhao@xmu.edu.cn

  • Received Date: June 13, 2019
  • Revised Date: September 03, 2019
  • Available Online: January 12, 2024
  • In recent years, more and more attention has been paid to the development of cancer diagnosis and treatment, including nanoparticles-based methods. Silica nanoparticles show great potential in the field of tumor diagnosis and treatment because of its unique physical and chemical properties. The drug delivery system based on SiO2 NPs can passively or actively target tumor tissues, and controllably release of cytotoxic drug at the tumor tissue by responding to different stimuli modes. It can effectively increase the concentration of anti-tumor drugs at the tumor site and improve treatment efficiency. In addition, SiO2 NPs can be used for tumor tissue localization and drug tracking by loading contrast agent to achieve the function of biological imaging. In this way, more efficient anti-tumor treatment can be achieved. In this paper, we introduced the preparation methods of SiO2 NPs and review the research progress of SiO2 NPs in targeted drug delivery system and biological imaging field.

  • [1]
    Jafari S, Derakhshankhah H, Alaei L, et al. Mesoporous silica nanoparticles for therapeutic/diagnostic applications[J]. Biomed Pharmacother, 2019, 109: 1100-1111. doi: 10.1016/j.biopha.2018.10.167
    [2]
    Murugan B, Krishnan UM. Chemoresponsive smart mesoporous silica systems-An emerging paradigm for cancer therapy[J]. Int J Pharm, 2018, 553(1-2): 310-326. doi: 10.1016/j.ijpharm.2018.10.026
    [3]
    Kumar P, Tambe P, Paknikar KM, et al. Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform[J]. J Control Release, 2018, 287: 35-57. doi: 10.1016/j.jconrel.2018.08.024
    [4]
    Tabasi O, Falamaki C, Khalaj Z. Functionalized mesoporous silicon for targeted-drug-delivery[J]. Colloids Surf B Biointerfaces, 2012, 98: 18-25. doi: 10.1016/j.colsurfb.2012.04.018
    [5]
    Graf C, Dembski S, Hofmann A, et al. A General Method for the Controlled Embedding of Nanoparticles in Silica Colloids[J]. Langmuir, 2006, 22(13): 5604-5610. doi: 10.1021/la060136w
    [6]
    安璐, 张崇琨, 胡鹤, 等.中空二氧化硅微球的制备及其在超声成像中的应用研究[J].上海师范大学学报(自然科学版), 2012, 41(4): 432-440. doi: 10.3969/j.issn.1000-5137.2012.04.015

    An L, Zhang CK, Hu H, et al. Synthesis of hollow silica microspheres and their applications in ultrasound imaging[J]. Shanghai Shi Fan Da Xue Xue Bao(Zi Ran Ke Xue Ban), 2012, 41(4): 432-440. doi: 10.3969/j.issn.1000-5137.2012.04.015
    [7]
    Chen Y, Chen H, Guo L, et al. Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy[J]. ACS Nano, 2010, 4(1): 529-539. doi: 10.1021/nn901398j
    [8]
    Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery[J]. Acta pharm Sin B, 2018, 8(2): 165-177. doi: 10.1016/j.apsb.2018.01.007
    [9]
    Yang Y, Yu C. Advances in silica based nanoparticles for targeted cancer therapy[J]. Nanomedicine, 2016, 12(2): 317-332. doi: 10.1016/j.nano.2015.10.018
    [10]
    Fang J, Zhang S, Xue X, et al. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy[J]. Int J Nanomedicine, 2018, 13: 5113-5126. doi: 10.2147/IJN.S170862
    [11]
    Zhang X, Li Y, Wei M, et al. Cetuximab-modified silica nanoparticle loaded with ICG for tumor-targeted combinational therapy of breast cancer[J]. Drug Deliv, 2019, 26(1): 129-136. doi: 10.1080/10717544.2018.1564403
    [12]
    Wu M, Meng Q, Chen Y, et al. Large-Pore Ultrasmall Mesoporous Organosilica Nanoparticles: Micelle/Precursor Co-templating Assembly and Nuclear-Targeted Gene Delivery[J]. Adv Mater, 2015, 27(2): 215-222. doi: 10.1002/adma.201404256
    [13]
    Chen F, Nayak TR, Goel S, et al. In Vivo Tumor Vasculature Targeted PET/NIRF Imaging with TRC105(Fab)-Conjugated, Dual-Labeled Mesoporous Silica Nanoparticles[J]. Molecular Pharmaceutics, 2014, 11(11): 4007-4014. doi: 10.1021/mp500306k
    [14]
    Maggini L, Cabrera I, Ruiz-Carretero A, et al. Breakable mesoporous silica nanoparticles for targeted drug delivery[J]. Nanoscale, 2016, 8(13): 7240-7247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ac0e62e0a05037535f2a44aeff693f00
    [15]
    Sánchez A, Ovejero Paredes K, Ruiz-Cabello J, et al. Hybrid Decorated Core@Shell Janus Nanoparticles As Flexible Platform For Targeted Multimodal Molecular Bioimaging Of Cancer[J]. ACS Appl Mater Interfaces, 2018, 10(37): 31032-31043. doi: 10.1021/acsami.8b10452
    [16]
    Yamaguchi H, Hayama K, Sasagawa I, et al. HER2-Targeted Multifunctional Silica Nanoparticles Specifically Enhance the Radiosensitivity of HER2-Overexpressing Breast Cancer Cells[J]. Int J Mol Sci, 2018, 19(3): E908. doi: 10.3390/ijms19030908
    [17]
    Gu S, Ngamcherdtrakul W, Reda M, et al. Lack of acquired resistance in HER2-positive breast cancer cells after long-term HER2 siRNA nanoparticle treatment[J]. PLoS One, 2018, 13(6): e0198141. doi: 10.1371/journal.pone.0198141
    [18]
    Meng LX, Ren Q, Meng Q, et al. Trastuzumab modified silica nanoparticles loaded with doxorubicin for targeted and synergic therapy of breast cancer[J]. Artif Cells Nanomed Biotechnol, 2018, 46(sup3): s556-s563. doi: 10.1080/21691401.2018.1501380
    [19]
    Li Y, Duo Y, Zhai P, et al. Dual targeting delivery of miR-328 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy[J]. Nanomedicine(Lond), 2018.[Epub ahead of print
    [20]
    Wang Y, Cui Y, Zhao Y, et al. Fluorescent carbon dot-gated multifunctional mesoporous silica nanocarriers for redox/enzyme dual-responsive targeted and controlled drug delivery and real-time bioimaging[J]. Eur J Pharm Biopharm, 2017, 117: 105-115. doi: 10.1016/j.ejpb.2017.03.019
    [21]
    Shi XL, Li Y, Zhao LM, et al. Delivery of MTH1 inhibitor (TH287) and MDR1 siRNA via hyaluronic acid-based mesoporous silica nanoparticles for oral cancers treatment[J]. Colloids Surf B Biointerfaces, 2019, 173:599-606. doi: 10.1016/j.colsurfb.2018.09.076
    [22]
    Chen C, Yao W, Sun W, et al. A self-targeting and controllable drug delivery system constituting mesoporous silica nanoparticles fabricated with a multi-stimuli responsive chitosan-based thin film layer[J]. Int J Biol Macromol, 2019, 122: 1090-1099. doi: 10.1016/j.ijbiomac.2018.09.058
    [23]
    Das M, Solanki A, Joshi A, et al. β-cyclodextrin based dual-responsive multifunctional nanotheranostics for cancer cell targeting and dual drug delivery[J]. Carbohydr Polym, 2019, 206: 694-705. doi: 10.1016/j.carbpol.2018.11.049
    [24]
    Qu W, Meng B, Yu Y, et al. Folic acid-conjugated mesoporous silica nanoparticles for enhanced therapeutic efficacy of topotecan in retina cancers[J]. Int J Nanomedicine, 2018, 13: 4379-4389. doi: 10.2147/IJN.S142668
    [25]
    Rejeeth C, Vivek R, Nipunbabu V, et al. Cancer nanomedicine: from PDGF targeted drug delivery[J]. Medchemcomm, 2017, 8(11): 2055-2059. doi: 10.1039/C7MD00391A
    [26]
    Liu Y, Chen Q, Xu M, et al. Single peptide ligand-functionalized uniform hollow mesoporous silica nanoparticles achieving dual-targeting drug delivery to tumor cells and angiogenic blood vessel cells[J]. Int J Nanomedicine, 2015, 10:1855-1867. doi: 10.2217/nnm.15.75
    [27]
    Wu M, Meng Q, Chen Y, et al. Large-Pore Ultrasmall Mesoporous Organosilica Nanoparticles: Micelle/Precursor Co-templating Assembly and Nuclear-Targeted Gene Delivery[J]. Adv Mater, 2015, 27(2): 215-222. doi: 10.1002/adma.201404256
    [28]
    Han L, Tang C, Yin C. Dual-targeting and pH/redox-responsive multi-layered nanocomplexes for smart co-delivery of doxorubicin and siRNA[J]. Biomaterials, 2015, 60: 42-52. doi: 10.1016/j.biomaterials.2015.05.001
    [29]
    Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells?[J]. Trends Biochem Sci, 2016, 41(3): 287. doi: 10.1016/j.tibs.2016.01.004
    [30]
    Samykutty A, Grizzle WE, Fouts BL, et al. Optoacoustic imaging identifies ovarian cancer using a microenvironment targeted theranostic wormhole mesoporous silica nanoparticle[J]. Biomaterials, 2018, 182: 114-126. doi: 10.1016/j.biomaterials.2018.08.001
    [31]
    Song Y, Li Y, Xu Q, et al. Mesoporous silica nanoparticles for stimuli-responsive controlled drug delivery: advances, challenges, and outlook[J]. Int J Nanomedicine, 2016, 12: 87-110. doi: 10.2147/IJN.S117495
    [32]
    Liu Y, Ding X, Li J, et al. Enzyme responsive drug delivery system based on mesoporous silica nanoparticles for tumor therapy in vivo[J]. Nanotechnology, 2015, 26(14): 145102. doi: 10.1088/0957-4484/26/14/145102
    [33]
    Lu Y, Li L, Lin Z, et al. Enhancing Osteosarcoma Killing and CT Imaging Using Ultrahigh Drug Loading and NIR-Responsive Bismuth Sulfide@Mesoporous Silica Nanoparticles[J]. Adv Healthc Mater, 2018, 7(19): 1800602. doi: 10.1002/adhm.201800602
    [34]
    Ruiz-hernández E, Baeza A, Vallet-Regí M. Smart Drug Delivery through DNA/Magnetic Nanoparticle Gates[J]. ACS Nano, 2011, 5(2): 1259-1266. doi: 10.1021/nn1029229
    [35]
    Brunella V, Jadhav SA, Miletto I, et al. Hybrid drug carriers with temperature-controlled on-off release: A simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles[J]. React Funct Polym, 2016, 98: 31-37. doi: 10.1016/j.reactfunctpolym.2015.11.006
    [36]
    Li A, Zhang J, Xu Y, et al. Thermoresponsive copolymer/SiO2 nanoparticles with dual functions of thermally controlled drug release and simultaneous carrier decomposition[J]. Chemistry, 2015, 20(40): 12945-12953.
    [37]
    Peralta ME, Jadhav SA, Magnacca G, et al. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery[J]. J Colloid Interface Sci, 2019, 544: 198-205. doi: 10.1016/j.jcis.2019.02.086
    [38]
    Baeza A, Manzano M, Colilla M, et al. Recent advances in mesoporous silica nanoparticles for antitumor therapy: our contribution[J]. Biomater Sci, 2016, 4(5): 803-13. doi: 10.1039/C6BM00039H
    [39]
    Jin R, Liu Z, Bai Y, et al. Multiple-Responsive Mesoporous Silica Nanoparticles for Highly Accurate Drugs Delivery to Tumor Cells[J]. ACS Omega, 2018, 3(4): 4306-4315. doi: 10.1021/acsomega.8b00427
    [40]
    赵苗, 赵云, 周军.靶向超声造影剂在癌症诊疗中的应用前景[J].肿瘤防治研究, 2017, 44(5): 360-364. doi: 10.3971/j.issn.1000-8578.2017.05.010

    Zhao M, Zhao Y, Zhou J. Application Perspectives of Targeted Ultrasound Contrast Agents in Diagnosis and Therapy of Cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2017, 44(5): 360-364. doi: 10.3971/j.issn.1000-8578.2017.05.010
    [41]
    Maboudi SA, Shojaosadati SA, Aliakbari F, et al. Theranostic magnetite cluster@silica@albumin double-shell particles as suitable carriers for water-insoluble drugs and enhanced T2 MR imaging contrast agents[J]. Mater Sci Eng C Mater Biol Appl, 2019, 99: 1485-1492. doi: 10.1016/j.msec.2019.02.063
    [42]
    Goel S, Chen F, Hong H, et al. VEGF121-Conjugated Mesoporous Silica Nanoparticle: A Tumor Targeted Drug Delivery System[J]. ACS Appl Mater Interfaces, 2014, 6(23): 21677-21685. doi: 10.1021/am506849p
    [43]
    Zhang Y, Cheng J, Li N, et al. A versatile theranostic nanoplatform based on mesoporous silica[J]. Mater Sci Eng C Mater Biol Appl, 2019, 98: 560-571. doi: 10.1016/j.msec.2019.01.004
    [44]
    Kim SE, Zhang L, Ma K, et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth[J]. Nat Nanotechnol, 2016, 11(11): 977-985. doi: 10.1038/nnano.2016.164
    [45]
    Xue H, Yu Z, Liu Y, et al. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma[J]. Int J Nanomedicine, 2017, 12: 5271-5287. doi: 10.2147/IJN.S135306
    [46]
    Bouramtane S, Bretin L, Pinon A, et al. Porphyrin-xylan-coated silica nanoparticles for anticancer photodynamic therapy[J]. Carbohydr Polym, 2019, 213: 168-175. doi: 10.1016/j.carbpol.2019.02.070
    [47]
    Ellahioui Y, Patra M, Mari C, et al. Mesoporous silica nanoparticles functionalised with a photoactive ruthenium(ii) complex: exploring the formulation of a metal-based photodynamic therapy photosensitiser[J]. Dalton Trans, 2019, 48(18): 5940-5951. doi: 10.1039/C8DT02392A
    [48]
    Lin AL, Li SZ, Xu CH, et al. A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy[J]. Biomater Sci, 2018, 7(1): 211-219. http://cn.bing.com/academic/profile?id=d408c509900d66e93216369615a8ef31&encoded=0&v=paper_preview&mkt=zh-cn
    [49]
    Vallhov H, Gabrielsson S, Stromme M, et al. Mesoporous Silica Particles Induce Size Dependent Effects on Human Dendritic Cells[J]. Nano Lett, 2007, 7(12): 3576-3582. doi: 10.1021/nl0714785
    [50]
    Fenoglio I, Martra G, Coluccia S, et al. Possible Role of Ascorbic Acid in the Oxidative Damage Induced by Inhaled Crystalline Silica Particles[J]. Chem Res Toxicol, 2000, 13(10): 971-975. doi: 10.1021/tx000125h
    [51]
    Malvindi MA, Brunetti V, Vecchio G, et al. SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing[J]. Nanoscale, 2012, 4(2): 486-495. doi: 10.1039/C1NR11269D
    [52]
    Chang JS, Chang KL, Hwang DF, et al. In Vitro Cytotoxicitiy of Silica Nanoparticles at High Concentrations Strongly Depends on the Metabolic Activity Type of the Cell Line[J]. Environ Sci Technol, 2007, 41(6): 2064-2068. doi: 10.1021/es062347t
    [53]
    He X, Nie H, Wang K, et al. In vivo Study of Biodistribution and Urinary Excretion of Surface-Modified Silica Nanoparticles[J]. Anal Chem, 2008, 80(24): 9597-9603. doi: 10.1021/ac801882g
  • Related Articles

    [1]JIN Guanghao, GU Ke. Advances in Bone Marrow Function Protection for Cervical Cancer Intensity-Modulated Radiotherapy Informed by Magnetic Resonance Imaging[J]. Cancer Research on Prevention and Treatment, 2025, 52(9): 792-797. DOI: 10.3971/j.issn.1000-8578.2025.25.0182
    [2]LI Basen, LIU Liangjin, RUAN Yajun, TAN Fangqin, LI Qin, HAN Yunfeng. Evaluation of Therapeutic Response to Endocrine Therapy for Prostate Cancer by MRI Diffusion-weighted Imaging Based on PI-RADSv2.1[J]. Cancer Research on Prevention and Treatment, 2023, 50(7): 694-699. DOI: 10.3971/j.issn.1000-8578.2023.22.1396
    [3]CHENG Kai, ZHOU Jie, CHEN Yu, CHEN Daozhen. Progress of Stimulation Response Strategy Based on Nanomaterials in Tumor Therapy[J]. Cancer Research on Prevention and Treatment, 2019, 46(9): 841-846. DOI: 10.3971/j.issn.1000-8578.2019.19.0285
    [4]XUE Yazhou, LI Hongjun, ZHAO Jiahong, ZHANG Rui, LI Xiaohui, PANG Jianzhi, YANG Xiaofeng. Best Imaging Time of Near-infrared Fluorescence Imaging for Prostate Cancer Xenografts[J]. Cancer Research on Prevention and Treatment, 2019, 46(6): 499-503. DOI: 10.3971/j.issn.1000-8578.2019.18.1900
    [5]XIA Lei, WANG Xudong, YANG Gen, ZHU Hua, YANG Zhi. Progress in Mesothelin as Target for Cancer Specific Radionuclide Imaging[J]. Cancer Research on Prevention and Treatment, 2018, 45(9): 691-694. DOI: 10.3971/j.issn.1000-8578.2018.18.0087
    [6]HE Ming, ZHAO Jidong, XU Xinjian, LI Yong, CHEN Xin. Application of Near-infrared Fluorescent Imaging in Thoracic Surgery[J]. Cancer Research on Prevention and Treatment, 2018, 45(4): 263-265. DOI: 10.3971/j.issn.1000-8578.2018.17.1179
    [7]LI Haiyuan, HUA Chenzhao, ZHOU Fenghai. Research Progress of Novel Endoscopic Imaging Technology for Bladder Cancer Diagnosis[J]. Cancer Research on Prevention and Treatment, 2016, 43(5): 418-421. DOI: 10.3971/j.issn.1000-8578.2016.05.021
    [8]ZHAO Mingyuan, GAO Wenting, SONG Ya'nan, WANG Fujin, WANG Aiguo, WANG Jingyu. Imaging Effect of Low-field MRI on Primary Tumors and Transplanted Tumors in Mice[J]. Cancer Research on Prevention and Treatment, 2015, 42(11): 1100-1103. DOI: 10.3971/j.issn.1000-8578.2015.11.009
    [9]WANG Lan, ZHU Shuchai, HAN Chun. Review on Multiple Functional Image Technologies in Chemoradiotherapy Response Prediction and Prognosis Evaluation for Esophageal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2015, 42(03): 295-299. DOI: 10.3971/j.issn.1000-8578.2015.03.018
    [10]Guo Lei, Tang Lili, Mao Jie, Wu Yuhui, Shen Zhengtang, Wang Shouman, Qi Ying, Yan Guojiao. Diagnostic Value of Sure-touch Tactile Breast Imaging for Breast Cancer[J]. Cancer Research on Prevention and Treatment, 2012, 39(06): 645-648. DOI: 10.3971/j.issn.1000-8578.2012.06.008
  • Cited by

    Periodical cited type(1)

    1. 刘鹏涛,王聪,栾云浩,刘婉嫕,李宇航,曹慧. 纳米纤维素结合银纳米粒子用于抗菌材料的研究进展. 天津科技大学学报. 2021(06): 60-66 .

    Other cited types(2)

Catalog

    Corresponding author: ZHAO Qinjian, qinjian_zhao@xmu.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (3144) PDF downloads (1777) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return