Advanced Search
CHENG Kai, ZHOU Jie, CHEN Yu, CHEN Daozhen. Progress of Stimulation Response Strategy Based on Nanomaterials in Tumor Therapy[J]. Cancer Research on Prevention and Treatment, 2019, 46(9): 841-846. DOI: 10.3971/j.issn.1000-8578.2019.19.0285
Citation: CHENG Kai, ZHOU Jie, CHEN Yu, CHEN Daozhen. Progress of Stimulation Response Strategy Based on Nanomaterials in Tumor Therapy[J]. Cancer Research on Prevention and Treatment, 2019, 46(9): 841-846. DOI: 10.3971/j.issn.1000-8578.2019.19.0285

Progress of Stimulation Response Strategy Based on Nanomaterials in Tumor Therapy

More Information
  • Corresponding author:

    CHEN Daozhen, E-mail:chendaozhen@163.com

  • Received Date: March 11, 2019
  • Revised Date: June 13, 2019
  • Available Online: January 12, 2024
  • Most of the conventional chemotherapeutic agents against cancer have poor targeting and efficacy. With the development of nanomedicine, it is found that the stimulating response strategy based on nanomaterials can promote the gather, ingest and release of chemotherapeutic drugs in tumors through the response conditions of pH, redox, ROS and enzymes of the tumor microenvironment and external light, magnetic and other response conditions, thereby improving the safety and killing effect of the drug. This paper reviews the common nanomaterial-based stimulation response strategies and their role in tumor therapy, to provide some references for clinical application and future research.

  • [1]
    何杨, 杨润峰, 周莹莹, 等.阿瑞匹坦对妇科恶性肿瘤化疗相关不良反应的影响[J].肿瘤防治研究, 2018, 45(11): 913-916. doi: 10.3971/j.issn.1000-8578.2018.18.0265

    He Y, Yang RF, Zhou YY, et al. Effect of aprepitant on chemotherapy-induced adverse reactions in gynecological malignancy patients[J]. Zhong Liu Fang Zhi Yan Jiu, 2018, 45(11): 913-916. doi: 10.3971/j.issn.1000-8578.2018.18.0265
    [2]
    Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy[J]. Eur J Pharm Biopharm, 2015, 93: 52-79. doi: 10.1016/j.ejpb.2015.03.018
    [3]
    Narvekar M, Xue HY, Eoh JY, et al. Nanocarrier for poorly water-soluble anticancer drugs-barriers of translation and solutions[J]. AAPS PharmSciTech, 2014, 15(4): 822-833. doi: 10.1208/s12249-014-0107-x
    [4]
    Jackson HJ, Rafiq S, Brentjens RJ. Driving car t-cells forward[J]. Nat Rev Clin Oncol, 2016, 13(6): 370-383. doi: 10.1038/nrclinonc.2016.36
    [5]
    Tian X, Zhang L, Yang M, et al. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2018, 10(1). http://europepmc.org/abstract/MED/28471067
    [6]
    Kataoka K, Itaka K, Nishiyama N, et al. Smart polymeric micelles as nanocarriers for oligonucleotides and sirna delivery[J]. Nucleic Acids Symp Ser(Oxf), 2005, (49): 17-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=HighWire000002552769
    [7]
    Edgar JYC, Wang H. Introduction for design of nanoparticle based drug delivery systems[J]. Curr Pharm Des, 2017, 23(14): 2108-2112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=94d57bbeec04273a782e1f34227512ad
    [8]
    Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications[J]. Nat Rev Drug Discov, 2010, 9(8): 615-627. doi: 10.1038/nrd2591
    [9]
    Zong H, Thomas TP, Lee KH, et al. Bifunctional pamam dendrimer conjugates of folic acid and methotrexate with defined ratio[J]. Biomacromolecules, 2012, 13(4): 982-991. doi: 10.1021/bm201639c
    [10]
    Jeon SJ, Hauser AW, Hayward RC. Shape-morphing materials from stimuli-responsive hydrogel hybrids[J]. Acc Chem Res, 2017, 50(2): 161-169. doi: 10.1021/acs.accounts.6b00570
    [11]
    Barile L, Vassalli G. Exosomes: Therapy delivery tools and biomarkers of diseases[J]. Pharmacol Ther, 2017, 174: 63-78. doi: 10.1016/j.pharmthera.2017.02.020
    [12]
    Wang H, Wu J, Xu L, et al. Albumin nanoparticle encapsulation of potent cytotoxic therapeutics shows sustained drug release and alleviates cancer drug toxicity[J]. Chem Commun (Camb), 2017, 53(17): 2618-2621. doi: 10.1039/C6CC08978J
    [13]
    Zou J, Zhang F, Zhang S, et al. Poly(ethylene oxide)-block-polyphosphoester-graft- paclitaxel conjugates with acid-labile linkages as a ph-sensitive and functional nanoscopic platform for paclitaxel delivery[J]. Adv Healthc Mater, 2014, 3(3): 441-448. doi: 10.1002/adhm.v3.3
    [14]
    Liu Y, Qiao L, Zhang S, et al. Dual ph-responsive multifunctional nanoparticles for targeted treatment of breast cancer by combining immunotherapy and chemotherapy[J]. Acta Biomater, 2018, 66: 310-324. doi: 10.1016/j.actbio.2017.11.010
    [15]
    Thambi T, Park JH, Lee DS. Stimuli-responsive polymersomes for cancer therapy[J]. Biomater Sci, 2016, 4(1): 55-69. doi: 10.1039/C5BM00268K
    [16]
    Choi KY, Saravanakumar G, Park JH, et al. Hyaluronic acid-based nanocarriers for intracellular targeting: Interfacial interactions with proteins in cancer[J]. Colloids Surf B Biointerfaces, 2012, 99: 82-94. doi: 10.1016/j.colsurfb.2011.10.029
    [17]
    Gaspar VM, Baril P, Costa EC, et al. Bioreducible poly(2-ethyl-2-oxazoline)-pla-pei- ss triblock copolymer micelles for co-delivery of DNA minicircles and doxorubicin[J]. J Control Release, 2015, 213: 175-191. doi: 10.1016/j.jconrel.2015.07.011
    [18]
    Ma X, Ozliseli E, Zhang Y, et al. Fabrication of redox-responsive doxorubicin and paclitaxel prodrug nanoparticles with microfluidics for selective cancer therapy[J]. Biomater Sci, 2019, 7(2): 634-644. doi: 10.1039/C8BM01333K
    [19]
    Behroozi F, Abdkhodaie MJ, Abandansari HS, et al. Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo[J]. Acta Biomater, 2018, 76: 239-256. doi: 10.1016/j.actbio.2018.05.031
    [20]
    Panieri E, Santoro MM. Ros signaling and redox biology in endothelial cells[J]. Cell Mol Life Sci, 2015, 72(17): 3281-3303. doi: 10.1007/s00018-015-1928-9
    [21]
    Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ros-mediated mechanisms: A radical therapeutic approach?[J]. Nat Rev Drug Discov, 2009, 8(7): 579-591. doi: 10.1038/nrd2803
    [22]
    Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ros) and ros-induced ros release[J]. Physiol Rev, 2014, 94(3): 909-950. doi: 10.1152/physrev.00026.2013
    [23]
    Li Y, Bai H, Wang H, et al. Reactive oxygen species (ros)-responsive nanomedicine for rnai-based cancer therapy[J]. Nanoscale, 2017, 10(1): 203-214. http://europepmc.org/abstract/MED/29210417
    [24]
    Shim MS, Xia Y. A reactive oxygen species (ros)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells[J]. Angew Chem Int Ed Engl, 2013, 52(27): 6926-6929. doi: 10.1002/anie.201209633
    [25]
    Xu X, Saw PE, Tao W, et al. Ros-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy[J]. Adv Mater, 2017, 29(33). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d887b7b8ba7908657bdaa5a1c00d05d9
    [26]
    Moloney JN, Cotter TG. Ros signalling in the biology of cancer [J]. Semin Cell Dev Biol, 2018, 80: 50-64. doi: 10.1016/j.semcdb.2017.05.023
    [27]
    Lee MR, Baek KH, Jin HJ, et al. Targeted enzyme-responsive drug carriers: Studies on the delivery of a combination of drugs[J]. Angew Chem Int Ed Engl, 2004, 43(13): 1675-1678. doi: 10.1002/(ISSN)1521-3773
    [28]
    de la Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics[J]. Adv Drug Deliv Rev, 2012, 64(11): 967-978. doi: 10.1016/j.addr.2012.01.002
    [29]
    Kumar B, Kulanthaivel S, Mondal A, et al. Mesoporous silica nanoparticle based enzyme responsive system for colon specific drug delivery through guar gum capping[J]. Colloids Surf B Biointerfaces, 2017, 150: 352-361. doi: 10.1016/j.colsurfb.2016.10.049
    [30]
    Zhang C, Pan D, Li J, et al. Enzyme-responsive peptide dendrimer-gemcitabine conjugate as a controlled-release drug delivery vehicle with enhanced antitumor efficacy[J]. Acta Biomater, 2017, 55: 153-162. doi: 10.1016/j.actbio.2017.02.047
    [31]
    Fouladi F, Steffen KJ, Mallik S. Enzyme-responsive liposomes for the delivery of anticancer drugs[J]. Bioconjug Chem, 2017, 28(4): 857-868. doi: 10.1021/acs.bioconjchem.6b00736
    [32]
    Xie J, Lee S, Chen X. Nanoparticle-based theranostic agents[J]. Adv Drug Deliv Rev, 2010, 62(11): 1064-1079. doi: 10.1016/j.addr.2010.07.009
    [33]
    Zhao P, Xu Q, Tao J, et al. Near infrared quantum dots in biomedical applications: Current status and future perspective[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2018, 10(3): e1483. http://europepmc.org/abstract/MED/28719080
    [34]
    文兰英.光动力疗法对小鼠B细胞淋巴瘤的体外和体内抗肿瘤作用[J].肿瘤防治研究, 2014, 41(8): 861-865. doi: 10.3971/j.issn.1000-8578.2014.08.001

    Wen LY. Anti-tumor effects of photodynamic therapy on mouse B cell lymphoma in vitro and in vivo[J]. Zhong Liu Fang Zhi Yan Jiu, 2014, 41(8): 861-865. doi: 10.3971/j.issn.1000-8578.2014.08.001
    [35]
    Chen JX, Wang HY, Li C, et al. Construction of surfactant-like tetra-tail amphiphilic peptide with rgd ligand for encapsulation of porphyrin for photodynamic therapy[J]. Biomaterials, 2011, 32(6): 1678-1684. doi: 10.1016/j.biomaterials.2010.10.047
    [36]
    Abbas M, Zou Q, Li S, et al. Self-assembled peptide- and protein-based nanomaterials for antitumor photodynamic and photothermal therapy[J]. Adv Mater, 2017, 29(12). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=848a9fcce6def779f5d16d9eda81923b
    [37]
    Zeng JY, Zou MZ, Zhang M, et al. π-extended benzoporphyrin-based metal-organic framework for inhibition of tumor metastasis[J]. ACS Nano, 2018, 12(5): 4630-4640. doi: 10.1021/acsnano.8b01186
    [38]
    Li F, Du Y, Liu J, et al. Responsive assembly of upconversion nanoparticles for ph-activated and near-infrared-triggered photodynamic therapy of deep tumors[J]. Adv Mater, 2018, 30(35): e1802808. doi: 10.1002/adma.201802808
    [39]
    Chen WH, Luo GF, Zhang XZ. Recent advances in subcellular targeted cancer therapy based on functional materials[J]. Adv Mater, 2019, 31(3): e1802725. doi: 10.1002/adma.v31.3
    [40]
    Guo W, Guo C, Zheng N, et al. Csx wo3 nanorods coated with polyelectrolyte multilayers as a multifunctional nanomaterial for bimodal imaging-guided photothermal/photodynamic cancer treatment[J]. Adv Mater, 2017, 29(4). doi: 10.1002/adma.201604157/pdf
    [41]
    Vijayaraghavan P, Liu CH, Vankayala R, et al. Designing multi-branched gold nanoechinus for nir light activated dual modal photodynamic and photothermal therapy in the second biological window[J]. Adv Mater, 2014, 26(39): 6689-6695. doi: 10.1002/adma.v26.39
    [42]
    An FF, Zhang XH. Strategies for preparing albumin-based nanoparticles for multifunctional bioimaging and drug delivery[J]. Theranostics, 2017, 7(15): 3667-3689. doi: 10.7150/thno.19365
    [43]
    Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine[J]. Nanoscale Res Lett, 2012, 7(1): 144. doi: 10.1186/1556-276X-7-144
    [44]
    Santhosh PB, Ulrih NP. Multifunctional superparamagnetic iron oxide nanoparticles: Promising tools in cancer theranostics[J]. Cancer Lett, 2013, 336(1): 8-17. doi: 10.1016/j.canlet.2013.04.032
    [45]
    Sun Y, Kim HS, Kang S, et al. Magnetic resonance imaging-guided drug delivery to breast cancer stem-like cells[J]. Adv Healthc Mater, 2018, 7(21): e1800266. doi: 10.1002/adhm.v7.21
    [46]
    Shevtsov M, Nikolaev B, Marchenko Y, et al. Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (cs-dx-spions)[J]. Int J Nanomedicine, 2018, 13: 1471-1482. doi: 10.2147/IJN
    [47]
    Saldívar-Ramírez MM, Sánchez-Torres CG, Cortés-Hernández DA, et al. Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia[J]. J Mater Sci Mater Med, 2014, 25(10): 2229-2236. doi: 10.1007/s10856-014-5187-3
    [48]
    Tay ZW, Chandrasekharan P, Chiu-Lam A, et al. Magnetic particle imaging-guided heating in vivo using gradient fields for arbitrary localization of magnetic hyperthermia therapy[J]. ACS Nano, 2018, 12(4): 3699-3713. doi: 10.1021/acsnano.8b00893
    [49]
    Mao BH, Tsai JC, Chen CW, et al. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy[J]. Nanotoxicology, 2016, 10(8): 1021-1040. doi: 10.1080/17435390.2016.1189614
    [50]
    Lin F, Wen D, Wang X, et al. Dual responsive micelles capable of modulating mirna-34a to combat taxane resistance in prostate cancer[J]. Biomaterials, 2019, 192: 95-108. doi: 10.1016/j.biomaterials.2018.10.036
    [51]
    Liu W, Zhang X, Zhou L, et al. Reduced graphene oxide (rgo) hybridized hydrogel as a near-infrared (nir)/ph dual-responsive platform for combined chemo-photothermal therapy[J]. J Colloid Interface Sci, 2019, 536: 160-170. doi: 10.1016/j.jcis.2018.10.050
    [52]
    Fakayode OJ, Kruger CA, Songca SP, et al. Photodynamic therapy evaluation of methoxypolyethyleneglycol-thiol-spions-gold-meso-tetrakis(4-hydroxyphenyl) porphyr in conjugate against breast cancer cells[J]. Mater Sci Eng C Mater Biol Appl, 2018, 92: 737-744. doi: 10.1016/j.msec.2018.07.026
    [53]
    Licciardi M, Scialabba C, Puleio R, et al. Smart copolymer coated spions for colon cancer chemotherapy[J]. Int J Pharm, 2019, 556: 57-67. doi: 10.1016/j.ijpharm.2018.11.069
    [54]
    Chen D, Zhang G, Li R, et al. Biodegradable, hydrogen peroxide, and glutathione dual responsive nanoparticles for potential programmable paclitaxel release[J]. J Am Chem Soc, 2018, 140(24): 7373-7376. doi: 10.1021/jacs.7b12025
  • Related Articles

    [1]FANG Yuhang, ZHANG Chuchu, SUI Bailu, WANG Yan, WANG Runxi, CHEN Yu, YUAN Xinhe, YANG Hongjun, ZHANG Ying. Visualization Analysis of Research Hotspots and Trends in Field of Tumor Therapy Based on CiteSpace and VOSviewer[J]. Cancer Research on Prevention and Treatment, 2025, 52(4): 297-304. DOI: 10.3971/j.issn.1000-8578.2025.24.0959
    [2]ZHAO Honghui, WANG Yudong. Research Progress on Role of Probiotic Akkermansia Muciniphila in Oncogenesis, Development and Treatment of Tumor[J]. Cancer Research on Prevention and Treatment, 2023, 50(4): 408-412. DOI: 10.3971/j.issn.1000-8578.2023.22.1087
    [3]LI Bingtai, KOU Bangguo, JIANG Yongjie, BIAN Pan, YIN Lanning. Anti-tumor Drug Delivery and Tumor Therapy Based on Metal-organic Frameworks[J]. Cancer Research on Prevention and Treatment, 2022, 49(8): 832-837. DOI: 10.3971/j.issn.1000-8578.2022.21.1457
    [4]CHAI Dongqi, WANG Weixing. Progress in One-carbon Metabolism and Tumor Therapy[J]. Cancer Research on Prevention and Treatment, 2021, 48(3): 288-292. DOI: 10.3971/j.issn.1000-8578.2021.20.0420
    [5]LIU Shiqi, GE Lihong, ZENG Sujuan. Research Progress on Diagnosis and Treatment of Oral Cancer Guided by Nanomedicine Technology[J]. Cancer Research on Prevention and Treatment, 2021, 48(2): 205-208. DOI: 10.3971/j.issn.1000-8578.2021.20.0633
    [6]QIAN Lili, ZHANG Honghe. Research Progress of Ribosome Biogenesis and Cancer[J]. Cancer Research on Prevention and Treatment, 2020, 47(5): 393-397. DOI: 10.3971/j.issn.1000-8578.2020.19.1138
    [7]ZHANG Yanli, ZHU Shunqin, LIU Yaling, CUI Hongjuan. 恶性黑色素瘤内科治疗研究进展[J]. Cancer Research on Prevention and Treatment, 2014, 41(01): 74-78. DOI: 10.3971/j.issn.1000-8578.2014.01.017
    [9]Song Shuxia, . Antitumoral Effect of Ederqini ingection[J]. Cancer Research on Prevention and Treatment, 1998, 25(4): 281-283.
    [10]Du Guanghui, . Intratumor Infection of DNCB Solution for Treating Tumor Bearing Mice[J]. Cancer Research on Prevention and Treatment, 1996, 23(5): 294-296.

Catalog

    Article views (2378) PDF downloads (2751) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return