Citation: | CHAI Dongqi, WANG Weixing. Progress in One-carbon Metabolism and Tumor Therapy[J]. Cancer Research on Prevention and Treatment, 2021, 48(3): 288-292. DOI: 10.3971/j.issn.1000-8578.2021.20.0420 |
In recent years, it has already run into a common view that "tumor is a metabolic disease", and the reprogramming of tumor metabolism has become the focus of current research. One-carbon metabolism involves folate cycle, methionine cycle and trans-sulfuration pathway. By utilizing these three ways, one carbon unit can regulate tumor growth and proliferation with the production of pyrimidine, thymidine, s-adenosine, glutathione, etc. This paper mainly describes the production and utilization of one carbon unit in tumor, as well as the interaction between one carbon metabolism and tumor development, providing new ideas for studying the mechanism of one-carbon metabolism in tumorigenesis and the treatment of nutrients in tumor.
[1] |
Diaz-Ruiz R, Rigoulet M, Devin A. The Warburg and Crabtree effects: On the origin of cancer cell energy metabolism and of yeast glucose repression[J]. Biochim Biophys Acta, 2011, 1807(6): 568-576. doi: 10.1016/j.bbabio.2010.08.010
|
[2] |
Newman AC, Maddocks ODK. One-carbon metabolism in cancer[J]. Br J Cancer, 2017, 116(12): 1499-1504. doi: 10.1038/bjc.2017.118
|
[3] |
Maddocks OD, Berkers CR, Mason SM, et al. Serine starvation induces stress and p53-dependent metabolic remodelling in cancer cells[J]. Nature, 2013, 493(7433): 542-546. doi: 10.1038/nature11743
|
[4] |
Newman AC, Maddocks ODK. Serine and Functional Metabolites in Cancer[J]. Trends Cell Biol, 2017, 27(9): 645-657. doi: 10.1016/j.tcb.2017.05.001
|
[5] |
Dayton TL, Jacks T, Vander Heiden MG. PKM2, cancer metabolism, and the road ahead[J]. EMBO Rep, 2016, 17(12): 1721-1730. doi: 10.15252/embr.201643300
|
[6] |
Hitosugi T, Zhou L, Elf S, et al. Phosphoglycerate mutase 1 coordinates glycolysis and biosynthesis to promote tumor growth[J]. Cancer Cell, 2012, 22(5): 585-600. doi: 10.1016/j.ccr.2012.09.020
|
[7] |
Possemato R, Marks KM, Shaul YD, et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer[J]. Nature, 2011, 476(7360): 346-350. doi: 10.1038/nature10350
|
[8] |
Ma X, Li B, Liu J, et al. Phosphoglycerate dehydrogenase promotes pancreatic cancer development by interacting with eIF4A1 and eIF4E[J]. J Exp Clin Cancer Res, 2019, 38(1): 66. doi: 10.1186/s13046-019-1053-y
|
[9] |
Zhang B, Zheng A, Hydbring P, et al. PHGDH Defines a Metabolic Subtype in Lung Adenocarcinomas with Poor Prognosis[J]. Cell Rep, 2017, 19(11): 2289-2303. doi: 10.1016/j.celrep.2017.05.067
|
[10] |
Ducker GS, Ghergurovich JM, Mainolfi N, et al. Human SHMT inhibitors reveal defective glycine import as a targetable metabolic vulnerability of diffuse large B-cell lymphoma[J]. Proc Natl Acad Sci U S A, 2017, 114(43): 11404-11409. doi: 10.1073/pnas.1706617114
|
[11] |
Macfarlane AJ, Perry CA, McEntee MF, et al. Shmt1 heterozygosity impairs folate-dependent thymidylate synthesis capacity and modifies risk of Apc(min)-mediated intestinal cancer risk[J]. Cancer Res, 2011, 71(6): 2098-2107. doi: 10.1158/0008-5472.CAN-10-1886
|
[12] |
Pai YJ, Leung KY, Savery D, et al. Glycine decarboxylase deficiency causes neural tube defects and features of non-ketotic hyperglycinemia in mice[J]. Nat Commun, 2015, 6: 6388. doi: 10.1038/ncomms7388
|
[13] |
Reina-Campos M, Diaz-Meco MT, Moscat J. The complexity of the serine glycine one-carbon pathway in cancer[J]. J Cell Biol, 2020, 219(1): e201907022. doi: 10.1083/jcb.201907022
|
[14] |
Zhang WC, Shyh-Chang N, Yang H, et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis[J]. Cell, 2012, 148(1-2): 259-272. doi: 10.1016/j.cell.2011.11.050
|
[15] |
Clare CE, Brassington AH, Kwong WY, et al. One-Carbon Metabolism: Linking Nutritional Biochemistry to Epigenetic Programming of Long-Term Development[J]. Annu Rev Anim Biosci, 2019, 7: 263-287. doi: 10.1146/annurev-animal-020518-115206
|
[16] |
Yang M, Vousden KH. Serine and one-carbon metabolism in cancer[J]. Nat Rev Cancer, 2016, 16(10): 650-662. doi: 10.1038/nrc.2016.81
|
[17] |
Ducker GS, Chen L, Morscher RJ, et al. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway[J]. Cell Metab, 2016, 23(6): 1140-1153. doi: 10.1016/j.cmet.2016.04.016
|
[18] |
Nilsson R, Jain M, Madhusudhan N, et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer[J]. Nat Commun, 2014, 5: 3128. doi: 10.1038/ncomms4128
|
[19] |
Nishimura T, Nakata A, Chen X, et al. Cancer stem-like properties and gefitinib resistance are dependent on purine synthetic metabolism mediated by the mitochondrial enzyme MTHFD2[J]. Oncogene, 2019, 38(14): 2464-2481. doi: 10.1038/s41388-018-0589-1
|
[20] |
Koufaris C, Valbuena GN, Pomyen Y, et al. Systematic integration of molecular profiles identifies miR-22 as a regulator of lipid and folate metabolism in breast cancer cells[J]. Oncogene, 2016, 35(21): 2766-2776. doi: 10.1038/onc.2015.333
|
[21] |
Pikman Y, Puissant A, Alexe G, et al. Targeting MTHFD2 in acute myeloid leukemia[J]. J Exp Med, 2016, 213(7): 1285-1306. doi: 10.1084/jem.20151574
|
[22] |
Nilsson R, Nicolaidou V, Koufaris C. Mitochondrial MTHFD isozymes display distinct expression, regulation, and association with cancer[J]. Gene, 2019, 716: 144032. doi: 10.1016/j.gene.2019.144032
|
[23] |
Fan J, Ye J, Kamphorst JJ, et al. Quantitative flux analysis reveals folate-dependent NADPH production[J]. Nature, 2014, 510(7504): 298-302. doi: 10.1038/nature13236
|
[24] |
Meiser J, Tumanov S, Maddocks O, et al. Serine one-carbon catabolism with formate overflow[J]. Sci Adv, 2016, 2(10): e1601273. doi: 10.1126/sciadv.1601273
|
[25] |
Struck AW, Thompson ML, Wong LS, et al. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications[J]. Chembiochem, 2012, 13(18): 2642-2655. doi: 10.1002/cbic.201200556
|
[26] |
Maddocks OD, Labuschagne CF, Adams PD, et al. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells[J]. Mol Cell, 2016, 61(2): 210-221. doi: 10.1016/j.molcel.2015.12.014
|
[27] |
Mentch SJ, Mehrmohamadi M, Huang L, et al. Histone Methylation Dynamics and Gene Regulation Occur through the Sensing of One-Carbon Metabolism[J]. Cell Metab, 2015, 22(5): 861-873. doi: 10.1016/j.cmet.2015.08.024
|
[28] |
Zeng JD, Wu WKK, Wang HY, et al. Serine and one-carbon metabolism, a bridge that links mTOR signaling and DNA methylation in cancer[J]. Pharmacol Res, 2019, 149: 104352. doi: 10.1016/j.phrs.2019.104352
|
[29] |
Kottakis F, Nicolay BN, Roumane A, et al. LKB1 loss links serine metabolism to DNA methylation and tumorigenesis[J]. Nature, 2016, 539(7629): 390-395. doi: 10.1038/nature20132
|
[30] |
Bindu DP, Snyder SH. H2S signalling through protein sulfhydration and beyond[J]. Nat Rev Mol Cell Biol, 2012, 13(8): 499-507. doi: 10.1038/nrm3391
|
[31] |
Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumour suppression[J]. Nat Rev Cancer, 2009, 9(8): 563-575. doi: 10.1038/nrc2676
|
[32] |
Gravel SP, Hulea L, Toban N, et al. Serine deprivation enhances antineoplastic activity of biguanides[J]. Cancer Res, 2014, 74(24): 7521-7533. doi: 10.1158/0008-5472.CAN-14-2643-T
|
[33] |
Maneikyte J, Bausys A, Leber B, et al. Dietary glycine decreases both tumor volume and vascularization in a combined colorectal liver metastasis and chemotherapy model[J]. Int J Biol Sci, 2019, 15(8): 1582-1590. doi: 10.7150/ijbs.35513
|
[34] |
Kim W, Woo HD, Lee J, et al. Dietary folate, one-carbon metabolism-related genes, and gastric cancer risk in Korea[J]. Mol Nutr Food Res, 2016, 60(2): 337-345. doi: 10.1002/mnfr.201500384
|
[35] |
Huang JY, Butler LM, Wang R, et al. Dietary Intake of One-Carbon Metabolism-Related Nutrients and Pancreatic Cancer Risk: The Singapore Chinese Health Study[J]. Cancer Epidemiol Biomarkers Prev, 2016, 25(2): 417-424. doi: 10.1158/1055-9965.EPI-15-0594
|
[36] |
Reina-Campos M, Linares JF, Duran A, et al. Increased Serine and One-Carbon Pathway Metabolism by PKCλ/ι Deficiency Promotes Neuroendocrine Prostate Cancer[J]. Cancer Cell, 2019, 35(3): 385-400. doi: 10.1016/j.ccell.2019.01.018
|
[37] |
Pacold ME, Brimacombe KR, Chan SH, et al. A PHGDH inhibitor reveals coordination of serine synthesis and one-carbon unit fate[J]. Nat Chem Biol, 2016, 12(6): 452-458. doi: 10.1038/nchembio.2070
|
[38] |
Koufaris C, Gallage S, Yang T, et al. Suppression of MTHFD2 in MCF-7 Breast Cancer Cells Increases Glycolysis, Dependency on Exogenous Glycine, and Sensitivity to Folate Depletion[J]. J Proteome Res, 2016, 15(8): 2618-2625. doi: 10.1021/acs.jproteome.6b00188
|
[39] |
Locasale JW. Serine, glycine and one-carbon units: cancer metabolism in full circle[J]. Nat Rev Cancer, 2013, 13(8): 572-583. doi: 10.1038/nrc3557
|
[40] |
Toh TB, Lim JJ, Chow EK. Epigenetics in cancer stem cells[J]. Mol Cancer, 2017, 16(1): 29. doi: 10.1186/s12943-017-0596-9
|
[41] |
Akar RO, Selvi S, Ulukaya E, et al. Key actors in cancer therapy: epigenetic modifiers[J]. Turk J Biol, 2019, 43(3): 155-170. doi: 10.3906/biy-1903-39
|
[42] |
Eckschlager T, Plch J, Stiborova M, et al. Histone Deacetylase Inhibitors as Anticancer Drugs[J]. Int J Mol Sci, 2017, 18(7): 1414. doi: 10.3390/ijms18071414
|