Advanced Search
CUI Yunpeng, SHI Xuedong. Progress of Treatment on Metastatic Spinal Tumors[J]. Cancer Research on Prevention and Treatment, 2018, 45(5): 337-342. DOI: 10.3971/j.issn.1000-8578.2018.17.1262
Citation: CUI Yunpeng, SHI Xuedong. Progress of Treatment on Metastatic Spinal Tumors[J]. Cancer Research on Prevention and Treatment, 2018, 45(5): 337-342. DOI: 10.3971/j.issn.1000-8578.2018.17.1262

Progress of Treatment on Metastatic Spinal Tumors

More Information
  • Corresponding author:

    SHI Xuedong, E-mail: 992516215@qq.com

  • Received Date: October 08, 2017
  • Revised Date: December 20, 2017
  • Available Online: January 12, 2024
  • The spine is the most common site of bone metastases. Massive pain, spinal cord compression and neurological dysfunction are common manifestations of spine metastases, negatively impacting the patients' quality of life. Previously, treatment options for spinal metastases, including radiotherapy and surgical treatment, were based primarily on prognostic scores such as Tomita or Tokuhashi. We now have a better understanding of which factors influence survival and quality of life after surgery, and several new techniques have been developed over the past decade to make surgery for spinal metastases safer and more acceptable to patients by decreasing postoperative pain and length of hospital stay. Especially, stereotactic body radiation therapy, minimally invasive techniques and targeted therapy have revolutionized the management of metastatic spine tumors.

  • [1]
    Lee BH, Kim TH, Chong HS, et al. Prognostic factor analysis in patients with metastatic spine disease depending on surgery and conservative treatment: review of 577 cases[J]. Ann Surg Oncol, 2013, 20(1): 40-6. doi: 10.1245/s10434-012-2644-4
    [2]
    Choi D, Fox Z, Albert T, et al. Prediction of quality of life and survival after surgery for symptomatic spinal metastases: a multicenter cohort study to determine suitability for surgical treatment[J]. Neurosurgery, 2015, 77(5): 698-708. doi: 10.1227/NEU.0000000000000907
    [3]
    Nater A, Tetreault LL, Davis AM, et al. Keypreoperative clinical factors predicting outcome in surgically treated patients withmetastatic epidural spinal cord compression: results from a survey of 438 AOSpineInternational Members[J]. World Neurosurg, 2016, 93: 436-448.e15. doi: 10.1016/j.wneu.2016.07.018
    [4]
    Jabbari S, Gerszten PC, Ruschin M, et al. Stereotacticbody radiotherapy for spinal metastases: practice guidelines, outcomes, and risks[J]. Cancer J, 2016, 22(4): 280-9. doi: 10.1097/PPO.0000000000000205
    [5]
    Redmond KJ, Lo SS, Fisher C, et al. Postoperative stereotactic body radiationtherapy (sbrt) for spine metastases: a critical review to guide practice[J]. Int J Radiat Oncol Biol Phys, 2016, 95(5): 1414-28. doi: 10.1016/j.ijrobp.2016.03.027
    [6]
    Knisely J, Sahgal A, Lo S, et al. Stereotactic radiosurgery/stereotacticbody radiation therapy-reflection on the last decade's achievements and futuredirections[J]. Ann Palliat Med, 2016, 5(2): 139-44. doi: 10.21037/apm
    [7]
    Chang JH, Gandhidasan S, Finnigan R, et al. Stereotactic Ablative Body Radiotherapy for the Treatment of Spinal Oligometastases[J]. Clin Oncol(R Coll Radiol), 2017, 29(7): e119-e125. doi: 10.1016/j.clon.2017.02.004
    [8]
    van Velden JM, Versteeg AL, Verkooijen HM, et al. Prospective Evaluation of the Relationship Between Mechanical Stability and Response to Palliative Radiotherapy for Symptomatic Spinal Metastases[J]. Oncologist, 2017, 22(8): 972-8. doi: 10.1634/theoncologist.2016-0356
    [9]
    Metcalfe S, Gbejuade H, Patel NR. The posterior transpedicular approach forcircumferential decompression and instrumented stabilization with titanium cagevertebrectomy reconstruction for spinal tumors: consecutive case series of50 patients[J]. Spine(Phila Pa 1976), 2012, 37(16): 1375-83. doi: 10.1097/BRS.0b013e318250a172
    [10]
    Fisher C, Batke J. Editorial: separation surgery[J]. J Neumsurg Spine, 2013, 18(3): 205-6. doi: 10.3171/2012.10.SPINE12743
    [11]
    Laufer I, Rubin DG, Lis E, et al. The NOMS framework: approach to the treatment of spinal metastatic tumors[J]. Oncologist, 2013, 18(6): 744-51. doi: 10.1634/theoncologist.2012-0293
    [12]
    Laufer I, Iorgulescu JB, Chapman T, et al. Local disease control for spinalmetastases following "separation surgery" and adjuvant hypofractionated or highdosesingle-fraction stereotactic radiosurgery: outcome analysis in 186 patients[J]. J Neurosurg Spine, 2013, 18(3): 207-14. doi: 10.3171/2012.11.SPINE12111
    [13]
    Xie P, Zhao Y, Li G. Efficacy of percutaneous vertebroplasty in patientswith painful vertebral metastases: a retrospective study in 47 cases[J]. Clin Neurol Neurosurg, 2015, 138: 157-61. doi: 10.1016/j.clineuro.2015.08.026
    [14]
    Bao L, Jia P, Li J, et al. Percutaneous Vertebroplasty Relieves Pain in Cervical Spine Metastases[J]. Pain Res Manag, 2017, 2017: 3926318.
    [15]
    Werner CM, Osterhoff G, Schlickeiser J, et al. Vertebral body stenting versuskyphoplasty for the treatment of osteoporotic vertebral compression fractures: arandomized trial[J]. J Bone Joint Surg Am, 2013, 95(7): 577-84. doi: 10.2106/JBJS.L.00024
    [16]
    Dong L, Tan M, Wu D, et al. Palliative Surgery for Spinal Metastases Using Posterior Decompression and Fixation combined with Intra-operative Vertebroplasty[J]. Clin Spinal Surg, 2017, 30(8): 343-9. doi: 10.1097/BSD.0000000000000253
    [17]
    Pezeshki D, Davidson S, Murphy K, et al. Comparison of the effect of two different bone-targeted radiofrequency ablation (RFA) systems alone and in combination with percutaneous vertebroplasty (PVP) on the biomechanical stability of the metastatic spine[J]. Eur Spine J, 2016, 25(12): 3990-6. doi: 10.1007/s00586-015-4057-0
    [18]
    Gu YF, Tian Q H, Li YD, et al. Percutaneous vertebroplasty and interventional tumor removal for malignant vertebral compression fractures and/or spinal metastatic tumor with epidural involvement: a prospective pilot study[J]. J Pain Res, 2017, 10: 211-8. doi: 10.2147/JPR
    [19]
    Wallace AN, Greenwood TJ, Jennings JW. Radiofrequency ablation and vertebral augmentation forpalliation of painful spinalmetastases[J]. J Neurooncol, 2015, 124(1): 111-8. doi: 10.1007/s11060-015-1813-2
    [20]
    Yang PL, He XJ, Li HP, et al. Image-guided minimally invasive percutaneous treatment of spinal metastasis[J]. Exp Ther Med, 2017, 13(2):705-9. doi: 10.3892/etm.2017.4029
    [21]
    Bludau F, Welzel G, Reis T, et al. Phase Ⅰ/Ⅱ trial of combined kyphoplasty and intraoperative radiotherapy inspinal metastases[J]. Spine J, 2017, pii: S1529-9430(17)31004-5. https://www.researchgate.net/profile/Fahed_Zairi
    [22]
    Molina CA, Gokaslan ZL, Sciubba DM. A systematic review of the current role of minimally invasive spine surgery in the management of metastatic spine disease[J]. Int J SurgOncol, 2011, 2011: 598148. http://europepmc.org/articles/PMC3263667
    [23]
    Ozkan N, Sandalcioglu IE, Petr O, et al. Minimally invasive transpedicular dorsalstabilization of the thoracolumbar and lumbar spine using the minimal access nontraumaticinsertion system (MANTIS): preliminary clinical results in 52 patients[J]. J Neurol Surg Part A Cent Eur Neurosurg, 2012, 73(6): 369-76. doi: 10.1055/s-00000180
    [24]
    Hamad A, Vachtsevanos L, Cattell A, et al. Minimally invasive spinal surgery for the management of symptomatic spinal metastasis[J]. Br J Neurosurg, 2017, 31(5): 526-30. doi: 10.1080/02688697.2017.1297374
    [25]
    Gu Y, Dong J, Jiang X, et al. Minimally invasive pedicle screws fixation and percutaneousvertebroplasty for the surgical treatment of thoracic metastatic tumors with neurologiccompression[J]. Spine (Phila Pa 1976), 2016, 41 Suppl 19: B14-B22. http://www.ncbi.nlm.nih.gov/pubmed/27653009
    [26]
    Bernard F, Lemée J M, Lucas O, et al. Postoperative quality-of-life assessment in patients with spine metastases treated with long-segment pedicle-screw fixation[J]. J Neurosurg Spine, 2017, 26(6): 725-35. doi: 10.3171/2016.9.SPINE16597
    [27]
    Elder BD, Lo SF, Holmes C, et al. The biomechanics of pedicle screw augmentationwith cement[J]. Spine J, 2015, 15(6): 1432-45. doi: 10.1016/j.spinee.2015.03.016
    [28]
    Gazzeri R, Roperto R, Fiore C. Surgical treatment of degenerative and traumaticspinal diseases with expandable screws in patients with osteoporosis: 2-year followupclinical study[J]. J Neurosurg Spine, 2016, 25(5): 610-9. doi: 10.3171/2016.3.SPINE151294
    [29]
    Moussazadeh N, Rubin DG, McLaughlin L, et al. Short-segment percutaneous pedicle screwfixation with cement augmentation for tumor-induced spinal instability[J]. Spine J, 2015, 15(7): 1609-17. doi: 10.1016/j.spinee.2015.03.037
    [30]
    Choi D, Bilsky M, Fehlings M, et al. Spine Oncology-Metastatic Spine Tumors[J]. Neurosurgery, 2017, 80(3S): S131-7. doi: 10.1093/neuros/nyw084
    [31]
    Ringel F, Ryang YM, Kirschke JS, et al. Radiolucent carbon-fiber reinforced pedicle screws for the treatment of spinal tumors: Advantages for radiation planning and follow-up imaging[J]. World Neurosurg, 2017, 105: 294-301. doi: 10.1016/j.wneu.2017.04.091
    [32]
    Tobin NP, Foukakis T, De Petris L, et al. The importance of molecular markers for diagnosis and selection of targeted treatments in patients with cancer[J]. J Intern Med, 2015, 278(6): 545-70. doi: 10.1111/joim.12429
    [33]
    Dohzono S, Sasaoka R, Takamatsu K, et al. Overall survival and prognostic factors in patients with spinal metastases from lung cancer treated with and without epidermal growth factor receptor tyrosine kinase inhibitors[J]. Int J Clin Oncol, 2017, 22(4): 698-705. doi: 10.1007/s10147-017-1116-z
    [34]
    Mok T, Ladrera G, Srimuninnimit V, et al. Tumor marker analyses from the phase Ⅲ, placebo-controlled, FASTACT-2 study of intercalated erlotinib with gemcitabine/platinum in the first-line treatment of advanced non-small-cell lung cancer[J]. Lung Cancer, 2016, 98: 1-8. doi: 10.1016/j.lungcan.2016.04.023
    [35]
    Olaussen KA, Postel-Vinay S. Predictors of chemotherapy efficacy in non-smallcell lung cancer : a challenging landscape[J]. Ann Oncol, 2016, 27(11): 2004-16. doi: 10.1093/annonc/mdw321
    [36]
    Schmidinger M, Wittes J. First-line treatment of metastatic renal cell carcinomaafter COMPARZ and PISCES[J]. Curr Opin Urol, 2015, 25(5): 395-401. doi: 10.1097/MOU.0000000000000207
    [37]
    Margolin K. The promise of molecularly targeted and immunotherapy foradvanced melanoma[J]. Curr Treat Options Oncol, 2016, 17(9): 48. doi: 10.1007/s11864-016-0421-5
    [38]
    Lee CH, Chung CK, Jahng TA, et al. Which one is a valuable surrogate forpredicting survival between Tomita and Tokuhashi scores in patients with spinalmetastases? A meta-analysis for diagnostic test accuracy and individual participantdata analysis[J]. J Neurooncol, 2015, 123(2): 267-75. doi: 10.1007/s11060-015-1794-1
    [39]
    Paton GR, Frangou E, Fourney DR. Contemporary treatment strategy for spinal metastasis: the "LMNOP" system[J]. Can J Neurol Sci, 2011, 38(3): 396-403. doi: 10.1017/S031716710001177X
    [40]
    Spratt DE, Beeler WH, de Moraes FY, et al. An integrated multidisciplinary algorithm for the management of spinal metastases: an International Spine Oncology Consortium report[R]. Lancet Oncol, 2017, 18(12): e720-30.
    [41]
    Curtin M, Piggott RP, Murphy EP, et al. Spinal Metastatic Disease: A Review of the Role of the Multidisciplinary Team[J]. Orthop Surg, 2017, 9(2): 145-51. doi: 10.1111/os.2017.9.issue-2
  • Related Articles

    [1]WANG Wenpeng, SHI Dan, YUN Duo, KONG Dalu, WANG Jiefu. Research Status of Deubiquitinating Enzymes and JOSD2 in Malignant Tumors[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 392-396. DOI: 10.3971/j.issn.1000-8578.2024.23.1244
    [2]LI Xinru, WANG Jiaqi, KE Xisong, ZHOU Xianglian. Dioscin Inhibits Ubiquitin-Proteasome System in Cancer Cells[J]. Cancer Research on Prevention and Treatment, 2023, 50(6): 567-572. DOI: 10.3971/j.issn.1000-8578.2023.23.0326
    [3]WANG Fengli, HU Jing. Research Progress on Regulatory Mechanism of Ubiquitin Modification on Warburg Effect in Malignant Tumors[J]. Cancer Research on Prevention and Treatment, 2022, 49(6): 616-622. DOI: 10.3971/j.issn.1000-8578.2022.21.1123
    [4]ZHOU Lin, ZHANG Wei, LI Naiyi, LIU Yongqiang, LV Chunlei. Effect of Ubiquitin-like with PHD and Ring Finger Domain 1 on Invasion and Metastasis of Gastric Cancer and Related Mechanism[J]. Cancer Research on Prevention and Treatment, 2016, 43(4): 258-262. DOI: 10.3971/j.issn.1000-8578.2016.04.004
    [5]WANG Juan, WEI Suju. Advances in Relationship Between Nedd4-like Family of E3 Ubiquitin Ligases and Cancer[J]. Cancer Research on Prevention and Treatment, 2015, 42(07): 725-729. DOI: 10.3971/j.issn.1000-8578.2015.07.018
    [6]YE Shengwei, WEI Shaozhong. Ubiquitin-specific Proteases 2 and Tumour[J]. Cancer Research on Prevention and Treatment, 2014, 41(05): 505-508. DOI: 10.3971/j.issn.1000-8578.2014.05.037
    [7]ZHANG Yanli, ZHU Shunqin, LIU Yaling, CUI Hongjuan. 恶性黑色素瘤内科治疗研究进展[J]. Cancer Research on Prevention and Treatment, 2014, 41(01): 74-78. DOI: 10.3971/j.issn.1000-8578.2014.01.017
    [8]CHEN Xi, LI Yingxia, CHEN Kuisheng, ZHANG Lan, ZHANG Bing, WEN Hongtao. Expression and Signifi cance of PIRH2 and P53 Proteins in Esophageal Squamous Cell Carcinoma Tissues[J]. Cancer Research on Prevention and Treatment, 2013, 40(11): 1046-1049. DOI: 10.3971/j.issn.1000-8578.2013.11.008
    [9]YAN Mao-jun, ZHAO Jin-min, SU Wei, LIU Qing-yi. Expression and Clinical Significance of MAGE-1,3,4 Gene in Human Colorectal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2008, 35(05): 339-342. DOI: 10.3971/j.issn.1000-8578.2838
    [10]PENG Xin-zhao, PIAO Ying-jie. Changes of Ubiquitin and bcl-2 During Autophagic Apoptosis of HepG2 Cells Induced by Vincristine[J]. Cancer Research on Prevention and Treatment, 2005, 32(11): 677-679. DOI: 10.3971/j.issn.1000-8578.658

Catalog

    Article views (2140) PDF downloads (411) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return