Advanced Search
WANG Wenpeng, SHI Dan, YUN Duo, KONG Dalu, WANG Jiefu. Research Status of Deubiquitinating Enzymes and JOSD2 in Malignant Tumors[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 392-396. DOI: 10.3971/j.issn.1000-8578.2024.23.1244
Citation: WANG Wenpeng, SHI Dan, YUN Duo, KONG Dalu, WANG Jiefu. Research Status of Deubiquitinating Enzymes and JOSD2 in Malignant Tumors[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 392-396. DOI: 10.3971/j.issn.1000-8578.2024.23.1244

Research Status of Deubiquitinating Enzymes and JOSD2 in Malignant Tumors

Funding: Tianjin Key Medical Discipline (Specialty) Construction Project (No. TJYXZDXK-009A); Tianjin Medical University Cancer Hospital National Natural Science Foundation Cultivation Program (No. 220108); National Natural Science Foundation of China (No. 82373134); Science and Technology Development Fund of Tianjin Education Commission for Higher Education (No. 2022KJ228)
More Information
  • Corresponding author:

    KONG Dalu, E-mail: kongdalu@tjmuch.com

    WANG Jiefu, E-mail: wangjiefu@tjmuch.com

  • Received Date: November 27, 2023
  • Revised Date: January 18, 2024
  • Available Online: August 08, 2024
  • Ubiquitination is a crucial post-translational modification process that can degrade proteins within cells and plays a vital role in maintaining protein homeostasis and abundance. Deubiquitinating enzymes (DUBs) are important proteases in the ubiquitin system. They reverse the ubiquitination process by cleaving protein chains and recycling ubiquitin molecules to regulate protein stability. Abnormal deubiquitinating enzyme activity is related to the occurrence and development of many malignant tumors. JOSD2, a DUB, is a member of the Machado-Joseph disease protein domain protease (MJD) family and characterized by a single highly conserved catalytic Josephin domain. Increasing studies have revealed a connection between JOSD2 and malignant tumors. This article elaborates on the current research status of DUBs, particularly JOSD2, in malignant tumors. Results suggest that JOSD2 is a potential target for the treatment of malignant tumors.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. doi: 10.3322/caac.21654
    [2]
    Kwon YT, Ciechanover A. The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy[J]. Trends Biochem Sci, 2017, 42(11): 873-886. doi: 10.1016/j.tibs.2017.09.002
    [3]
    Komander D, Rape M. The ubiquitin code[J]. Annu Rev Biochem, 2012, 81: 203-229. doi: 10.1146/annurev-biochem-060310-170328
    [4]
    Senft D, Qi J, Ronai ZA. Ubiquitin ligases in oncogenic transformation and cancer therapy[J]. Nat Rev Cancer, 2018, 18(2): 69-88. doi: 10.1038/nrc.2017.105
    [5]
    Popovic D, Vucic D, Dikic I. Ubiquitination in disease pathogenesis and treatment[J]. Nat Med, 2014, 20(11): 1242-1253. doi: 10.1038/nm.3739
    [6]
    Husnjak K, Dikic I. Ubiquitin-binding proteins: decoders of ubiquitin-mediated cellular functions[J]. Annu Rev Biochem, 2012, 81: 291-322. doi: 10.1146/annurev-biochem-051810-094654
    [7]
    Yau R, Rape M. The increasing complexity of the ubiquitin code[J]. Nat Cell Biol, 2016, 18(6): 579-586. doi: 10.1038/ncb3358
    [8]
    Komander D, Clague MJ, Urbé S. Breaking the chains: structure and function of the deubiquitinases[J]. Nat Rev Mol Cell Biol, 2009, 10(8): 550-563. doi: 10.1038/nrm2731
    [9]
    Harrigan JA, Jacq X, Martin NM, et al. Deubiquitylating enzymes and drug discovery: emerging opportunities[J]. Nat Rev Drug Discov, 2018, 17(1): 57-78. doi: 10.1038/nrd.2017.152
    [10]
    葛孚晶, 刘湘宁, 张鸿宇, 等. 去泛素化酶JOSD2通过调控DNA损伤修复影响非小细胞肺癌细胞对抗肿瘤药物的敏感性[J]. 浙江大学学报(医学版), 2023, 52(5): 533-543. [Ge FJ, Liu XN, Zhang HY, et al. Deubiquitinating enzyme JOSD2 affects susceptibility of NSCLC cells to anti-cancer drugs through DNA damage repair[J]. Zhejiang Da Xue Xue Bao (Yi Xue Ban), 2023, 52(5): 533-543.]

    Ge FJ, Liu XN, Zhang HY, et al. Deubiquitinating enzyme JOSD2 affects susceptibility of NSCLC cells to anti-cancer drugs through DNA damage repair[J]. Zhejiang Da Xue Xue Bao (Yi Xue Ban), 2023, 52(5): 533-543.
    [11]
    Li L, Liu T, Li Y, et al. The deubiquitinase USP9X promotes tumor cell survival and confers chemoresistance through YAP1 stabilization[J]. Oncogene, 2018, 37(18): 2422-2431. doi: 10.1038/s41388-018-0134-2
    [12]
    Wang J, Liu R, Mo H, et al. Deubiquitinase PSMD7 promotes the proliferation, invasion, and cisplatin resistance of gastric cancer cells by stabilizing RAD23B[J]. Int J Biol Sci, 2021, 17(13): 3331-3342. doi: 10.7150/ijbs.61128
    [13]
    Wu J, Liu C, Wang T, et al. Deubiquitinase inhibitor PR-619 potentiates colon cancer immunotherapy by inducing ferroptosis[J]. Immunology, 2023, 170(3): 439-451. doi: 10.1111/imm.13683
    [14]
    Ning Z, Guo X, Liu X, et al. USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma[J]. Nat Commun, 2022, 13(1): 2187. doi: 10.1038/s41467-022-29846-9
    [15]
    Zhang Q, Zhang ZY, Du H, et al. DUB3 deubiquitinates and stabilizes NRF2 in chemotherapy resistance of colorectal cancer[J]. Cell Death Differ, 2019, 26(11): 2300-2313. doi: 10.1038/s41418-019-0303-z
    [16]
    Zhang FK, Ni QZ, Wang K, et al. Targeting USP9X-AMPK Axis in ARID1A-Deficient Hepatocellular Carcinoma[J]. Cell Mol Gastroenterol Hepatol, 2022, 14(1): 101-127. doi: 10.1016/j.jcmgh.2022.03.009
    [17]
    Dai X, Lu L, Deng S, et al. USP7 targeting modulates anti-tumor immune response by reprogramming Tumor-associated Macrophages in Lung Cancer[J]. Theranostics, 2020, 10(20): 9332-9347. doi: 10.7150/thno.47137
    [18]
    Schwickart M, Huang X, Lill JR, et al. Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival[J]. Nature, 2010, 463(7277): 103-107. doi: 10.1038/nature08646
    [19]
    Li X, Song N, Liu L, et al. USP9X regulates centrosome duplication and promotes breast carcinogenesis[J]. Nat Commun, 2017, 8: 14866. doi: 10.1038/ncomms14866
    [20]
    Potu H, Peterson LF, Kandarpa M, et al. Usp9x regulates Ets-1 ubiquitination and stability to control NRAS expression and tumorigenicity in melanoma[J]. Nat Commun, 2017, 8: 14449. doi: 10.1038/ncomms14449
    [21]
    Jie X, Fong WP, Zhou R, et al. USP9X-mediated KDM4C deubiquitination promotes lung cancer radioresistance by epigenetically inducing TGF-β2 transcription[J]. Cell Death Differ, 2021, 28(7): 2095-2111. doi: 10.1038/s41418-021-00740-z
    [22]
    Cui J, Sun W, Hao X, et al. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells[J]. Cancer Cell Int, 2015, 15(1): 4. doi: 10.1186/s12935-014-0149-x
    [23]
    Wang Z, Kang W, You Y, et al. USP7: Novel Drug Target in Cancer Therapy[J]. Front Pharmacol, 2019, 10: 427. doi: 10.3389/fphar.2019.00427
    [24]
    Saha G, Roy S, Basu M, et al. USP7-a crucial regulator of cancer hallmarks[J]. Biochim Biophys Acta Rev Cancer, 2023, 1878(3): 188903. doi: 10.1016/j.bbcan.2023.188903
    [25]
    Korenev G, Yakukhnov S, Druk A, et al. USP7 Inhibitors in Cancer Immunotherapy: Current Status and Perspective[J]. Cancers (Basel), 2022, 14(22): 5539. doi: 10.3390/cancers14225539
    [26]
    Wang Z, Kang W, Li O, et al. Abrogation of USP7 is an alternative strategy to downregulate PD-L1 and sensitize gastric cancer cells to T cells killing[J]. Acta Pharm Sin B, 2021, 11(3): 694-707. doi: 10.1016/j.apsb.2020.11.005
    [27]
    Oliveira RI, Guedes RA, Salvador JAR. Highlights in USP7 inhibitors for cancer treatment[J]. Front Chem, 2022, 10: 1005727. doi: 10.3389/fchem.2022.1005727
    [28]
    Saha G, Sarkar S, Mohanta PS, et al. USP7 targets XIAP for cancer progression: Establishment of a p53-independent therapeutic avenue for glioma[J]. Oncogene, 2022, 41(47): 5061-5075. doi: 10.1038/s41388-022-02486-5
    [29]
    Zhang H, Deng T, Liu R, et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer[J]. Mol Cancer, 2020, 19(1): 43. doi: 10.1186/s12943-020-01168-8
    [30]
    Lin YT, Lin J, Liu YE, et al. USP7 Induces Chemoresistance in Triple-Negative Breast Cancer via Deubiquitination and Stabilization of ABCB1[J]. Cells, 2022, 11(20): 3294. doi: 10.3390/cells11203294
    [31]
    Yang GF, Zhang X, Su YG, et al. The role of the deubiquitinating enzyme DUB3/USP17 in cancer: a narrative review[J]. Cancer Cell Int, 2021, 21(1): 455. doi: 10.1186/s12935-021-02160-y
    [32]
    Jin X, Yan Y, Wang D, et al. DUB3 Promotes BET Inhibitor Resistance and Cancer Progression by Deubiquitinating BRD4[J]. Mol Cell, 2018, 71(4): 592-605. e4.
    [33]
    Wu X, Luo Q, Zhao P, et al. MGMT-activated DUB3 stabilizes MCL1 and drives chemoresistance in ovarian cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(8): 2961-2966. doi: 10.1073/pnas.1814742116
    [34]
    Zeng C, Zhao C, Ge F, et al. Machado-Joseph Deubiquitinases: From Cellular Functions to Potential Therapy Targets[J]. Front Pharmacol, 2020, 11: 1311. doi: 10.3389/fphar.2020.01311
    [35]
    Krassikova L, Zhang B, Nagarajan D, et al. The deubiquitinase JOSD2 is a positive regulator of glucose metabolism[J]. Cell Death Differ, 2021, 28(3): 1091-1109. doi: 10.1038/s41418-020-00639-1
    [36]
    Lei H, Yang L, Wang Y, et al. JOSD2 regulates PKM2 nuclear translocation and reduces acute myeloid leukemia progression[J]. Exp Hematol Oncol, 2022, 11(1): 42. doi: 10.1186/s40164-022-00295-w
    [37]
    Qian M, Yan F, Wang W, et al. Deubiquitinase JOSD2 stabilizes YAP/TAZ to promote cholangiocarcinoma progression[J]. Acta Pharm Sin B, 2021, 11(12): 4008-4019. doi: 10.1016/j.apsb.2021.04.003
    [38]
    Zhang B, Zheng A, Hydbring P, et al. PHGDH Defines a Metabolic Subtype in Lung Adenocarcinomas with Poor Prognosis[J]. Cell Rep, 2017, 19(11): 2289-2303. doi: 10.1016/j.celrep.2017.05.067
    [39]
    Huang Y, Zeng J, Liu T, et al. Deubiquitinating enzyme JOSD2 promotes hepatocellular carcinoma progression through interacting with and inhibiting CTNNB1 degradation[J]. Cell Biol Int, 2022, 46(7): 1089-1097. doi: 10.1002/cbin.11812
    [40]
    Wang Y, Li ZX, Wang JG, et al. Deubiquitinating enzyme Josephin-2 stabilizes PHGDH to promote a cancer stem cell phenotype in hepatocellular carcinoma[J]. Genes Genomics, 2023, 45(2): 215-224. doi: 10.1007/s13258-022-01356-4
    [41]
    Zhou L, Chen G, Liu T, et al. MJDs family members: Potential prognostic targets and immune-associated biomarkers in hepatocellular carcinoma[J]. Front Genet, 2022, 13: 965805. doi: 10.3389/fgene.2022.965805
    [42]
    Grasty KC, Weeks SD, Loll PJ. Structural insights into the activity and regulation of human Josephin-2[J]. J Struct Biol X, 2019, 3: 100011.
    [43]
    杨波, 何俏军, 朱虹, 等. JOSD2蛋白在制备治疗恶性肿瘤药物中的应用: CN111139299A[P]. 2020-05-12. [Yang B, He QJ, Zhu H, et al. Application of JOSD2 protein in the preparation of therapeutic drugs for malignant tumors: CN111139299A[P]. 2020-05-12.]

    Yang B, He QJ, Zhu H, et al. Application of JOSD2 protein in the preparation of therapeutic drugs for malignant tumors: CN111139299A[P]. 2020-05-12.

Catalog

    Tables(1)

    Article views (1610) PDF downloads (1087) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return