Advanced Search
YOU Junhao, XUE Feng, YAN Bing. Cancer Stem Cells Niche in Colorectal Cancer: Take Paneth Cells as an Example[J]. Cancer Research on Prevention and Treatment, 2017, 44(2): 147-152. DOI: 10.3971/j.issn.1000-8578.2017.02.014
Citation: YOU Junhao, XUE Feng, YAN Bing. Cancer Stem Cells Niche in Colorectal Cancer: Take Paneth Cells as an Example[J]. Cancer Research on Prevention and Treatment, 2017, 44(2): 147-152. DOI: 10.3971/j.issn.1000-8578.2017.02.014

Cancer Stem Cells Niche in Colorectal Cancer: Take Paneth Cells as an Example

More Information
  • Received Date: June 11, 2016
  • Revised Date: July 25, 2016
  • Available Online: January 12, 2024
  • In recent years, accumulating studies in cancer stem cells niche gradually opened an era of “niche time”. As one of the classical solid tumors, colorectal cancer presented a relatively clear process of cancer initiating and development, which would be an ideal model for niche research. Paneth cells, which play a key role in supporting and protecting the intestine stem cells, are important element of normal intestinal epithelium and also one of the major components of the stem cells niche. However, the potential role of these cells, take the Paneth cells for example, on the road of colorectal epithelium malignant transformation are still largely unknown. Further studies aimed to uncover the relationship of Paneth cells with the intestine stem cells and its role in different stages of colorectal tumor development could expand the knowledge of cancer stem cells niche, also, could help to find the potential new therapeutic targets for colorectal cancer treatment in future.

  • [1]
    Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-32. doi: 10.3322/caac.21338
    [2]
    Yan KS, Chia LA, Li X, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations[J]. Proc Natl Acad Sci U S A, 2012, 109(2): 466-71. doi: 10.1073/pnas.1118857109
    [3]
    van Es JH, Clevers H. Paneth cells[J]. Curr Biol, 2014, 24(12):R547-8. doi: 10.1016/j.cub.2014.04.049
    [4]
    Bevins CL, Salzman NH. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis[J]. Nat Rev Microbiol, 2011, 9(5): 356-68. doi: 10.1038/nrmicro2546
    [5]
    Sato T, van Es JH, Snippert HJ, et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts[J]. Nature, 2011, 469(7330): 415-8. doi: 10.1038/nature09637
    [6]
    Nakamura K, Ayabe T. Paneth cells and stem cells in the intestinal stem cell niche and their association with inflammatory bowel disease[J]. Inflamm Regen, 2012, 32(2): 53-60. doi: 10.2492/inflammregen.32.053
    [7]
    Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells-perspectives on current status and future directions: AACR Workshop on cancer stem cells[J]. Cancer Res, 2006, 66(19): 9339-44. doi: 10.1158/0008-5472.CAN-06-3126
    [8]
    Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty[J]. Cancer Cell, 2012, 21(3): 283-96. doi: 10.1016/j.ccr.2012.03.003
    [9]
    Vermeulen L, De Sousa E Melo F, Van dHM, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment[J]. Nat Cell Biol, 2010, 12(5): 468-76. doi: 10.1038/ncb2048
    [10]
    Bu P, Wang L, Chen KY, et al. A miR-34a-Numb feedforward loop triggered by inflammation regulates asymmetric stem cell division in intestine and colon cancer[J]. Cell Stem Cell, 2016, 18(2):189-202. doi: 10.1016/j.stem.2016.01.006
    [11]
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells[J]. Nature, 2007, 445(7123): 111-5. doi: 10.1038/nature05384
    [12]
    O’Brien CA, Pollett A, Gallinger S, et al. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice[J]. Nature, 2007, 445(7123): 106-10. doi: 10.1038/nature05372
    [13]
    Dalerba P, Dylla SJ, Park IK, et al. Phenotypic characterization of human colorectal cancer stem cells[J]. Proc Natl Acad Sci U S A , 2007, 104(24): 10158-63. doi: 10.1073/pnas.0703478104
    [14]
    Chu P, Clanton DJ, Snipas TS, et al. Characterization of a subpopulation of colon cancer cells with stem cell-like properties[J]. Int J Cancer, 2009, 124(6): 1312-21. doi: 10.1002/ijc.v124:6
    [15]
    Haraguchi N, Ohkuma M, Sakashita H, et al. CD133+CD44+ population efficiently enriches colon cancer initiating cells[J]. Ann Surg Oncol, 2008, 15(10): 2927-33. doi: 10.1245/s10434-008-0074-0
    [16]
    Huang EH, Hynes MJ, Zhang T, et al. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis[J]. Cancer Res, 2009, 69(8): 3382-9. doi: 10.1158/0008-5472.CAN-08-4418
    [17]
    Pang R, Law WL, Chu AC, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer[J]. Cell Stem Cell, 2010, 6(6): 603-15. doi: 10.1016/j.stem.2010.04.001
    [18]
    Lin L, Liu Y, Li H, et al. Targeting colon cancer stem cells using a new curcumin analogue, GO-Y030[J]. Br J Cancer, 2011, 105(2): 212-20. doi: 10.1038/bjc.2011.200
    [19]
    Zhang X. EphB2: a signature of colorectal cancer stem cells to predict relapse[J]. Protein Cell, 2011, 2(5): 347-348. doi: 10.1007/s13238-011-1058-6
    [20]
    Kemper K, Prasetyanti PR, De Lau W, et al. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells[J]. Stem Cells, 2012, 30(11): 2378-86. doi: 10.1002/stem.v30.11
    [21]
    Gemei M, Mirabelli P, Di Noto R, et al. CD66c is a novel marker for colorectal cancer stem cell isolation, and its silencing halts tumor growth in vivo[J]. Cancer, 2013, 119(4): 729-38. doi: 10.1002/cncr.27794
    [22]
    Todaro M, Gaggianesi M, Catalano V, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis[J]. Cell Stem Cell, 2014, 14(3): 342-56. doi: 10.1016/j.stem.2014.01.009
    [23]
    Kantara C, O’Connell M, Sarkar S, et al. Curcumin promotes autophagic survival of a subset of colon cancer stem cells, which are ablated by DCLK1-siRNA[J]. Cancer Res, 2014, 74(9): 2487-98. doi: 10.1158/0008-5472.CAN-13-3536
    [24]
    Takaishi S, Okumura T, Tu S, et al. Identification of gastric cancer stem cells using the cell surface marker CD44[J]. Stem Cells, 2009, 27(5): 1006-20. doi: 10.1002/stem.v27:5
    [25]
    Ricci-Vitiani L, Pallini R, Biffoni M, et al. Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells[J]. Nature, 2010, 468(7325): 824-8. doi: 10.1038/nature09557
    [26]
    Alvero AB, Chen R, Fu HH, et al. Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance[J]. Cell Cycle, 2009, 8(1): 158-66. doi: 10.4161/cc.8.1.7533
    [27]
    Bao S, Wu Q, Sathornsumetee S, et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor[J]. Cancer Res, 2006, 66(16): 7843-8. doi: 10.1158/0008-5472.CAN-06-1010
    [28]
    Filatova A, Acker T, Garvalov BK. The cancer stem cell niche(s): the crosstalk between glioma stem cells and their microenvironment[J]. Biochim Biophy Acta, 2013, 1830(2): 2496-508. doi: 10.1016/j.bbagen.2012.10.008
    [29]
    Ginestier C, Liu S, Diebel ME, et al. CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts[J]. J Clin Invest, 2010, 120(2): 485-97. doi: 10.1172/JCI39397
    [30]
    Rehn M, Olsson A, Reckzeh K, et al. Hypoxic induction of vascular endothelial growth factor regulates murine hematopoietic stem cell function in the low-oxygenic niche[J]. Blood, 2011, 118(6): 1534-43. doi: 10.1182/blood-2011-01-332890
    [31]
    Collet G, El Hafny-Rahbi B, Nadim M, et al. Hypoxia-shaped vascular niche for cancer stem cells[J]. Contemp Oncol (Pozn), 2015, 19(1A): A39-43.
    [32]
    Sceneay J, Chow MT, Chen A, et al. Primary tumor hypoxia recruits CD11b+/Ly6Cmed/Ly6G+ immune suppressor cells and compromises NK cell cytotoxicity in the premetastatic niche[J]. Cancer Res, 2012, 72(16): 3906-11. doi: 10.1158/0008-5472.CAN-11-3873
    [33]
    Mao Q, Zhang Y, Fu X, et al. A tumor hypoxic niche protects human colon cancer stem cells from chemotherapy[J]. J Cancer Res Clin Oncol, 2013, 139(2): 211-22. doi: 10.1007/s00432-012-1310-3
    [34]
    Miao ZF, Wang ZN, Zhao TT, et al. Peritoneal milky spots serve as a hypoxic niche and favor gastric cancer stem/progenitor cell peritoneal dissemination through hypoxia-inducible factor 1α[J]. Stem Cells, 2014, 32(12): 3062-74. doi: 10.1002/stem.v32.12
    [35]
    Joo M, Shahsafaei A, Odze RD. Paneth cell differentiation in colonic epithelial neoplasms: evidence for the role of the Apc/β-catenin/Tcf pathway[J]. Human Pathol, 2009, 40(6): 872-80. doi: 10.1016/j.humpath.2008.12.003
    [36]
    Pai RK, Rybicki LA, Goldblum JR, et al. Paneth cells in colonic adenomas: association with male sex and adenoma burden[J]. Am J Surg Pathol, 2013, 37(1): 98-103. doi: 10.1097/PAS.0b013e318267b02e
    [37]
    Wada R, Kuwabara N, Suda K. Incidence of Paneth cells in colorectal adenomas of Japanese descendants in Hawaii[J]. J Gastroenterol Hepatol, 1994, 9(3): 286-8. doi: 10.1111/j.1440-1746.1994.tb01727.x
    [38]
    Mantani Y, Nishida M, Yuasa H, et al. Ultrastructural and histochemical study on the Paneth cells in the rat ascending colon[J]. Anat Rec (Hoboken), 2014, 297(8): 1462-71. doi: 10.1002/ar.v297.8
    [39]
    Rothenberg ME, Nusse Y, Kalisky T, et al. Identification of a cKit+ colonic crypt base secretory cell that supports Lgr5+ stem cells in mice[J]. Gastroenterology, 2012, 142(5): 1195-1205. e6. doi: 10.1053/j.gastro.2012.02.006
    [40]
    Emmink BL, Van Houdt WJ, Vries RG, et al. Differentiated human colorectal cancer cells protect tumor-initiating cells from irinotecan[J]. Gastroenterology, 2011, 141(1): 269-78. doi: 10.1053/j.gastro.2011.03.052
    [41]
    Bellone G, Carbone A, Sibona N, et al. Aberrant activation of c-kit protects colon carcinoma cells against apoptosis and enhances their invasive potential[J]. Cancer Res, 2001, 61(5): 2200-6.
    [42]
    Fatrai S, van Schelven SJ, Ubink I, et al. Maintenance of clonogenic KIT+ human colon tumor cells requires secretion of stem cell factor by differentiated tumor cells[J]. Gastroenterology, 2015, 149(3): 692-704. doi: 10.1053/j.gastro.2015.05.003
    [43]
    Takebe N, Harris PJ, Warren RQ, et al. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways[J]. Nat Rev Clin Oncol, 2011, 8(2): 97-106. doi: 10.1038/nrclinonc.2010.196
    [44]
    Qi L, Sun B, Liu Z, et al. Wnt3a expression is associated with epithelial-mesenchymal transition and promotes colon cancer progression[J]. J Exp Clin Cancer Res, 2014, 33: 107. doi: 10.1186/s13046-014-0107-4
    [45]
    Qi L, Song W, Liu Z, et al. Wnt3a Promotes the vasculogenic mimicry formation of colon cancer via wnt/β-catenin signaling[J]. Int J Mol Sci, 2015, 16(8): 18564-79. doi: 10.3390/ijms160818564
    [46]
    van Es JH, Jay P, Gregorieff A, et al. Wnt signalling induces maturation of Paneth cells in intestinal crypts[J]. Nat Cell Biol, 2005, 7(4): 381-6. doi: 10.1038/ncb1240
  • Related Articles

    [1]WANG Hao, HUANG Huixian, LI Youran, YAN Yuehua, YI Jiaqin, LIU Xiaoyu, LUO Dongmei, GU Yu. Neogambogic Acid Suppresses Characteristics of Colorectal Cancer Stem Cells Through Inhibition of Wnt/β-catenin Signaling Pathway[J]. Cancer Research on Prevention and Treatment, 2025, 52(7): 554-561. DOI: 10.3971/j.issn.1000-8578.2025.24.1125
    [2]WANG Ruihua, CAI Shiliang, LIU Donghong, CHEN Hongsen, CAO Guangwen. Research Progress of Androgen/Androgen Receptor Signaling Pathway in Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2023, 50(2): 180-185. DOI: 10.3971/j.issn.1000-8578.2023.22.0714
    [3]WANG Zihe, LI Zengliang, FANG Xuzhe, ZHU Jin. Research Progress on Influence of DNA Methylation on Signal Pathways Related to Invasion and Metastasis of Nasopharyngeal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(9): 956-960. DOI: 10.3971/j.issn.1000-8578.2022.22.0052
    [4]XUE Rui, GAO Jiping, YAN Xiaoru, XU Guoqiang, SONG Guohua. Effects of Autophagy-related Genes and Signal Pathways on Occurrence and Development of Oral Tumors[J]. Cancer Research on Prevention and Treatment, 2021, 48(5): 514-518. DOI: 10.3971/j.issn.1000-8578.2021.20.1377
    [5]GOU Yunjiu, MA Jilong, HAN Songchen, JIN Dacheng, CHEN Meng, WANG Bing, BAI Qizhou. CircHIPK3 Affects Malignant Phenotypes in Esophageal Squamous Cell Carcinoma by Regulating p53-Akt-Mdm2 Signaling Pathways[J]. Cancer Research on Prevention and Treatment, 2019, 46(11): 987-993. DOI: 10.3971/j.issn.1000-8578.2019.19.0386
    [6]ZHAI Linzhu, ZHAO Yuanyuan, LIN Lizhu. Current Research Status of NF-kappa B Related Molecular Pathway in Diffuse Large B Cell Lymphoma[J]. Cancer Research on Prevention and Treatment, 2016, 43(10): 903-906. DOI: 10.3971/j.issn.1000-8578.2016.10.015
    [7]GUO Zhen, JIAO Feng, JIN Ziliang, WANG Liwei. Roles of HOXB7 in Tumors and Related Signaling Pathways[J]. Cancer Research on Prevention and Treatment, 2015, 42(02): 200-203. DOI: 10.3971/j.issn.1000-8578.2015.02.022
    [8]ZHANG Juan, LIU Kangdong, GUO Lihua, DONG Ziming. Changes of Signal Transduction Pathways in Esophageal Cancer[J]. Cancer Research on Prevention and Treatment, 2014, 41(08): 943-947. DOI: 10.3971/j.issn.1000-8578.2014.08.020
    [9]WANG Jian, ZHAO Zhenchun, GUO Zhen, BAI Mingdong. Role of Wnt/PCP Signal Pathway in Colon Carcinogenesis in Experimental Rats[J]. Cancer Research on Prevention and Treatment, 2014, 41(08): 876-878. DOI: 10.3971/j.issn.1000-8578.2014.08.004
    [10]ZHANG Yu-jun, ZHOU Bo, XIE Fei. Differences of Signaling Pathway of NSP-1, NSP-2 and NSP-3 in Breast Cancer Cells[J]. Cancer Research on Prevention and Treatment, 2010, 37(02): 153-157. DOI: 10.3971/j.issn.1000-8578.2010.02.008

Catalog

    Corresponding author: YAN Bing, y_bing41@163.com

    1. On this Site
    2. On Google Scholar
    3. On PubMed
    Article views (2665) PDF downloads (717) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return