Application Perspectives of Targeted Ultrasound Contrast Agents in Diagnosis and Therapy of Cancer
-
摘要:
随着癌症发病率和死亡率的持续增加,靶向超声造影剂介导的超声诊断技术和治疗技术对癌症的二级预防和三级预防具有积极影响。尽管靶向超声造影剂目前仍然处于临床前实验阶段,但是已经初步展现出其突出的应用价值。它能够在癌症鉴别、疗效监测以及作为基因和药物载体介导癌症靶向治疗等方面发挥重要作用,最终得以实现癌症诊断治疗一体化。近期,国外研究还证实靶向超声造影剂具有抗肿瘤血管作用从而增强放疗效果。靶向超声造影剂介导的分子成像、精准化疗、靶向基因治疗、放疗增敏是实现“精准医疗”的重要支持技术,总结近年来靶向超声造影剂在肿瘤疾病中的研究进展和应用潜力能够进一步推进其向临床应用的转化。
Abstract:Cancer has become the important social problems in China with its increasing incidence and mortality. Targeted ultrasound contrast agents-mediated ultrasound molecular diagnostic techniques and targeted therapeutic techniques may contribute to secondary prevention and tertiary prevention of cancer. Targeted ultrasound contrast agents have shown a prominent application value for its good advantage in cancer identification, efficacy monitoring, and serving as the gene and drug carriers to mediate cancer targeted therapy, and ultimately achieving the integration of cancer diagnosis and therapy though they are currently still in preclinical stage. Recently, foreign studies have also confirmed that targeted ultrasound contrast agents have anti-vascular effects and thus enhance the radiotherapy effect. Targeted ultrasound contrast agents-mediated ultrasound molecular imaging, precise chemotherapy, targeted gene therapy, radiotherapy sensitization are important support technologies of "precision medicine". It will help to further accelerate ultrasound contrast agents translating into clinical applications by summarizing its recent progress and potential clinical application.
-
Key words:
- Targeted ultrasound contrast agents /
- Cancer /
- Molecular imaging /
- Therapy
-
-
[1] Chen W, Zheng R, Baade P, et al.Cancer statistics in China, 2015[J].CA Cancer J Clin, 2016, 66(2): 115-32. doi: 10.3322/caac.21338
[2] Pysz MA, Foygel K, Rosenberg J, et al.Antiangiogenic cancer therapy: monitoring with molecular US and a clinically translatable contrast agent (BR55)[J].Radiology, 2010, 256(2): 519-27. doi: 10.1148/radiol.10091858
[3] Yang H, Cai W, Xu L, et al.Nanobubble-Affibody: Novel ultrasound contrast agents for targeted molecular ultrasound imaging of tumor[J].Biomaterials, 2015, 37: 279-88. doi: 10.1016/j.biomaterials.2014.10.013
[4] Jian J, Liu C, Gong Y, et al.India ink incorporated multifunctional phase-transition nanodroplets for photoacoustic/ultrasound dual-modality imaging and photoacoustic effect based tumor therapy[J].Theranostics, 2014, 4(10): 1026-38. doi: 10.7150/thno.9754
[5] Perlman O, Weitz IS, Azhari H.Copper oxide nanoparticles as contrast agents for MRI and ultrasound dual-modality imaging[J].Phys Med Biol, 2015, 60(15): 5767-83. doi: 10.1088/0031-9155/60/15/5767
[6] Xu J, Zeng X, Liu Y, et al.A novel dual-targeted ultrasound contrast agent provides improvement of gene delivery efficiency in vitro[J].Tumor Biol, 2016, 37(7): 8609-19. doi: 10.1007/s13277-015-4681-7
[7] Abou-Elkacem L, Bachawal SV, Willmann JK.Ultrasound molecular imaging: Moving toward clinical translation[J].Eur J Radiol, 2015, 84(9): 1685-93. doi: 10.1016/j.ejrad.2015.03.016
[8] Errico C, Pierre J, Pezet S, et al.Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging[J].Nature, 2015, 527(7579): 499-502. doi: 10.1038/nature16066
[9] Bachawal SV, Jensen KC, Lutz AM, et al.Earlier detection of breast cancer with ultrasound molecular imaging in a transgenic mouse model[J].Cancer Res, 2013, 73(6): 1689-98. doi: 10.1158/0008-5472.CAN-12-3391
[10] Barua A, Yellapa A, Bahr JM, et al.Enhancement of ovarian tumor detection with avβ3 integrin-targeted ultrasound molecular imaging agent in laying hens: a preclinical model of spontaneous ovarian cancer[J].Int J Gynecol Cancer, 2014, 24(1): 19-28. doi: 10.1097/IGC.0000000000000040
[11] Wang L, Li L, Guo Y, et al.Construction and in vitro/in vivo targeting of PSMA-targeted nanoscale microbubbles in prostate cancer[J].Prostate, 2013, 73(11): 1147-58. doi: 10.1002/pros.v73.11
[12] Foygel K, Wang H, Machtaler S, et al.Detection of pancreatic ductal adenocarcinoma in mice by ultrasound imaging of thymocyte differentiation antigen 1[J].Gastroenterology, 2013, 145(4): 885-94. doi: 10.1053/j.gastro.2013.06.011
[13] Tsuruta JK, Klauber-DeMore N, Streeter J, et al.Ultrasound molecular imaging of secreted frizzled related protein-2 expression in murine angiosarcoma[J].PLoS One, 2014, 9(1): e86642. doi: 10.1371/journal.pone.0086642
[14] Lutz AM, Bachawal SV, Drescher CW, et al.Ultrasound molecular imaging in a human CD276 expression-modulated murine ovarian cancer model[J].Clin Cancer Res, 2014, 20(5): 1313-22. doi: 10.1158/1078-0432.CCR-13-1642
[15] Zhang H, Tam S, Ingham ES, et al.Ultrasound molecular imaging of tumor angiogenesis with a neuropilin-1-targeted microbubble[J].Biomaterials, 2015, 56: 104-13. doi: 10.1016/j.biomaterials.2015.03.043
[16] Wang H, Lutz AM, Hristov D, et al.Intra-animal Comparison between Three-dimensional Molecularly Targeted US and Three-dimensional Dynamic Contrast-enhanced US for Early Antiangiogenic Treatment Assessment in Colon Cancer[J].Radiology, 2017, 2082(2): 443-52. http://paper.medlive.cn/literature/2049488
[17] Fan X, Wang L, Guo Y, et al.Inhibition of prostate cancer growth using doxorubicin assisted by ultrasound-targeted nanobubble destruction[J].Int J Nanomedicine, 2016, 11: 3585-96. doi: 10.2147/IJN
[18] Fan CH, Ting CY, Liu HL, et al.Antiangiogenic-targeting drug-loaded microbubbles combined with focused ultrasound for glioma treatment[J].Biomaterials, 2013, 34(8): 2142-55. doi: 10.1016/j.biomaterials.2012.11.048
[19] Zhao YZ, Lin Q, Wong HL, et al.Glioma-targeted therapy using Cilengitide nanoparticles combined with UTMD enhanced delivery[J].J Control Release, 2016, 224: 112-25. doi: 10.1016/j.jconrel.2016.01.015
[20] Liu H, Chang S, Sun J, et al.Ultrasound-mediated destruction of LHRHa-targeted and paclitaxel-loaded lipid microbubbles induces proliferation inhibition and apoptosis in ovarian cancer cells[J].Mol Pharm, 2014, 11(1): 40-8. doi: 10.1021/mp4005244
[21] Xing L, Shi Q, Zheng K, et al.Ultrasound-Mediated Microbubble Destruction (UMMD) Facilitates the Delivery of CA19-9 Targeted and Paclitaxel Loaded mPEG-PLGA-PLL Nanoparticles in Pancreatic Cancer[J].Theranostics, 2016, 6(10): 1573-87. doi: 10.7150/thno.15164
[22] 张宇虹, 夏稻子, 礼广森, 等.超声靶向破坏微泡技术介导shRNA抑制小鼠肝癌细胞株JNK1基因表达[J].中国医学影像技术, 2014, 30(8): 1131-5. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX201408005.htm Zhang YH, Xia DZ, Li GS, et al.Inhibitory effects of shRNA on expression of JNK1 in mouse hepatocellular carcinoma cell lines mediated by ultrasound-targeted microbubble destruction[J].Zhongguo Yi Xue Ying Xiang Ji Shu, 2014, 30(8): 1131-5. http://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX201408005.htm
[23] Chertok B, Langer R, Anderson DG.Spatial Control of Gene Expression by Nanocarriers Using Heparin Masking and Ultrasound-Targeted Microbubble Destruction[J].Acs Nano, 2016, 10(8): 7267-78. doi: 10.1021/acsnano.6b01199
[24] Lin CY, Hsieh HY, Chen CM, et al.Non-invasive, neuron-specific gene therapy by focused ultrasound-induced blood-brain barrier opening in Parkinson's disease mouse model[J].J Control Release, 2016, 235: 72-81. doi: 10.1016/j.jconrel.2016.05.052
[25] Fan CH, Chang EL, Ting CY, et al.Folate-conjugated gene-carrying microbubbles with focused ultrasound for concurrent blood-brain barrier opening and local gene delivery[J].Biomaterials, 2016, 106: 46-57. doi: 10.1016/j.biomaterials.2016.08.017
[26] 曾欣欣, 徐金锋, 刘莹莹, 等.携iRGD肽阳离子微泡的制备及其基本性质检测[J].中国超声医学杂志, 2016, 32(5): 471-3. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGCY201605029.htm Zeng XX, Xu JF, Liu YY, et al.Preparation and Characterization of iRGD Targeted Cationic Microbubbles[J].Zhongguo Chao Sheng Yi Xue Za Zhi, 2016, 32(5): 471-3 http://www.cnki.com.cn/Article/CJFDTOTAL-ZGCY201605029.htm
[27] O'Shea T, Bamber J, Fontanarosa D, et al.Review of ultrasound image guidance in external beam radiotherapy part Ⅱ: intra-fraction motion management and novel applications[J].Phys Med Biol, 2016, 61(8): R90-137. doi: 10.1088/0031-9155/61/8/R90
[28] Tran WT, Iradji S, Sofroni E, et al.Microbubble and ultrasound radioenhancement of bladder cancer[J].Br J Cancer, 2012, 107(3): 469-76. doi: 10.1038/bjc.2012.279
[29] Lai P, Tarapacki C, Tran WT, et al.Breast tumor response to ultrasound mediated excitation of microbubbles and radiation therapy in vivo[J].Oncoscience, 2016, 3(3-4): 98-108. http://www.impactjournals.com/oncoscience/files/papers/1/299/299.pdf
[30] Ji Y, Han Z, Shao L, et al.Antitumor effects of combining tumor radiation with the antivascular action of ultrasound stimulated microbubbles[J].Int J Clin Exp Pathol, 2015, 8(9): 9958-74. https://www.ncbi.nlm.nih.gov/pubmed/26722610

下载:

