Citation: | KONG Xiaoyang, LIU Xia, DONG Caihua, XIA Yudui, LU Yi, ZHANG Jian. Garcinone E Inhibits Proliferation, Migration and Invasion of Human Nasopharyngeal Carcinoma Cells[J]. Cancer Research on Prevention and Treatment, 2018, 45(9): 617-622. DOI: 10.3971/j.issn.1000-8578.2018.18.0161 |
To explore the effect of Garcinone E, extracted from Garcinia oblongifolia Champ, on the proliferation, migration and invasion of nasopharyngeal carcinoma(NPC) HK1 and HONE1 cells and elucidate its possible mechanism.
The effect of Garcinone E on the proliferation, migration and invasion of nasopharyngeal carcinoma HK1 and HONE1 cells lines was examined using MTS and Transwell assay, respectively. The expressions of EMT-related protein and mRNA and possible pathway were detected by Western blot and q-PCR.
MTS assay showed that Garcinone E significantly inhibited the viability of HK1 and HONE1 cell lines in a dose-dependent manner. Transwell assay showed that compared with the blank control group, 7.5μmol/L Garcinone E suppressed the migration and invasion of HK1 and HONE1 cell lines obviously. Western blot results indicated that Garcinone E decreased the expression of p-Vimentin, Snail and Slug and increased the expression of E-cadherin in a dose-dependent manner. q-PCR assay showed that Garcinone E increased the expression of E-cadherin mRNA in HK1 and HONE1 cell lines.
Garcinone E could inhibit the proliferation, migration and invasion abilities of nasopharyngeal carcinoma cells, which may be related to regulating the process of EMT.
[1] |
Lee KT, Tan JK, Lam AK, et al. MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: A critical review[J]. Crit Rev Oncol Hematol, 2016, 103: 1-9. doi: 10.1016/j.critrevonc.2016.04.006
|
[2] |
Jiang F, Jin T, Feng XL, et al. Long-term outcomes and failure patterns of patients with nasopharyngeal carcinoma staged by magnetic resonance imaging in intensity-modulated radiotherapy era: The Zhejiang Cancer Hospital's experience[J]. J Cancer Res Ther, 2015, 11(Suppl 2): C179-84. https://core.ac.uk/display/88374883
|
[3] |
Li C, Qi Q, Lu N, et al. Gambogic acid promotes apoptosis and resistance to metastatic potential in MDA-MB-231 human breast carcinoma cells[J]. Biochem Cell Biol, 2012, 90(6): 718-30. doi: 10.1139/o2012-030
|
[4] |
Zhao X, Chen Q, Liu Y, et al. Effect of xanthone derivatives on animal models of depression[J]. Curr Ther Res Clin Exp, 2014, 76: 45-50. doi: 10.1016/j.curtheres.2014.04.003
|
[5] |
Tan S, Yang B, Liu J, et al. Penicillixanthone A, a marine-derived dual-coreceptor antagonist as anti-HIV-1 agent[J]. Nat Prod Res, 2017, 19: 1-5. http://europepmc.org/abstract/MED/29258357
|
[6] |
Wang W, Liao Y, Huang X, et al. A novel xanthone dimer derivative with antibacterial activity isolated from the bark of Garcinia mangostana[J]. Nat Prod Res, 2017, 13: 1-6. http://www.ncbi.nlm.nih.gov/pubmed/29132213
|
[7] |
Phyu MP, Tangpong J. Neuroprotective effects of xanthone derivative of Garcinia mangostana against lead-induced acetylcholinesterase dysfunction and cognitive impairment[J]. Food Chem Toxicol, 2014, 70: 151-6. doi: 10.1016/j.fct.2014.04.035
|
[8] |
Zheng HH, Luo CT, Chen H, et al. Xanthones from Swertia mussotii as multitarget-directed antidiabetic agents[J]. Chem Med Chem, 2014, 9(7): 1374-7. doi: 10.1002/cmdc.v9.7
|
[9] |
Mohamed GA, Al-Abd AM, El-Halawany AM, et al. New xanthones and cytotoxic constituents from Garcinia mangostana fruit hulls against human hepatocellular, breast, and colorectal cancer cell lines[J]. J Ethnopharmacol, 2017, 198: 302-12. doi: 10.1016/j.jep.2017.01.030
|
[10] |
Xu XH, Liu QY, Li T, et al. Garcinone E induces apoptosis and inhibits migration and invasion in ovarian cancer cells[J]. Sci Rep, 2017, 7(1): 10718. doi: 10.1038/s41598-017-11417-4
|
[11] |
Kumazaki M, Noguchi S, Yasui Y, et al. Anti-cancer effects of naturally occurring compounds through modulation of signal transduction and miRNA expression in human colon cancer cells[J]. J Nutr Biochem, 2013, 24(11): 1849-58. doi: 10.1016/j.jnutbio.2013.04.006
|
[12] |
Xu Q, Ma J, Lei J, et al. α-Mangostin suppresses the viability and epithelial-mesenchymal transition of pancreatic cancer cells by downregulating the PI3K/Akt pathway[J]. Biomed Res Int, 2014, 2014: 546353. http://europepmc.org/articles/PMC4000937
|
[13] |
Li M, Ma H, Yang L, et al. Mangiferin inhibition of proliferation and induction of apoptosis in human prostate cancer cells is correlated with downregulation of B-cell lymphoma-2 and upregulation of microRNA-182[J]. Oncol Lett, 2016, 11(1): 817-22. doi: 10.3892/ol.2015.3924
|
[14] |
Singh M, Manoranjan B, Mahendram S, et al. Brain metastasis-initiating cells: survival of the fittest[J]. Int J Mol Sci, 2014, 15(5): 9117-33. doi: 10.3390/ijms15059117
|
[15] |
Geiger TR, Peeper DS. Metastasis mechanisms[J]. Biochim Biophys Acta, 2009, 1796(2): 293-308. http://d.old.wanfangdata.com.cn/Periodical/zgfazz200906009
|
[16] |
Savagner P. Epithelial-mesenchymal transitions: from cell plasticity to concept elasticity[J]. Curr Top Dev Biol, 2015, 112: 273-300. doi: 10.1016/bs.ctdb.2014.11.021
|
[17] |
Wang X, Wang H, Li G, et al. Activated macrophages down-regulate expression of E-cadherin in hepatocellular carcinoma cells via NF-kappaB/Slug pathway[J]. Tumour Biol, 2014, 35(9): 8893-901. doi: 10.1007/s13277-014-2159-7
|
[18] |
Liu YN, Yin JJ, Abou-Kheir W, et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms[J]. Oncogene, 2013, 32(3): 296-306. doi: 10.1038/onc.2012.58
|
[19] |
Chiang SP, Cabrera RM, Segall JE. Tumor cell intravasation[J]. Am J Physiol Cell Physiol, 2016, 311(1): C1-14. doi: 10.1152/ajpcell.00238.2015
|
[20] |
Thaiparambil JT, Bender L, Ganesh T, et al. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation[J]. Int J Cancer, 2011, 129(11): 2744-55. doi: 10.1002/ijc.25938
|
[21] |
Zeng S, Xie X, Xiao YF, et al. Long noncoding RNA LINC00675 enhances phosphorylation of vimentin on Ser83 to suppress gastric cancer progression[J]. Cancer Lett, 2018, 412: 179-87. doi: 10.1016/j.canlet.2017.10.026
|
[1] | WANG Yafei, GENG Tianxiang, CHEN Linlin, LI Zhiguo, LI Shipeng. Effect of miR-524-5p on Epithelial-mesenchymal Transition in Esophageal Cancer Cells by Regulating HEG1 Expression[J]. Cancer Research on Prevention and Treatment, 2023, 50(11): 1059-1065. DOI: 10.3971/j.issn.1000-8578.2023.23.0426 |
[2] | FU Shenbo, GONG Tuotuo, GUO Junjun. Effect of LncRNA PTENP1 on TGF-β-induced Epithelial-mesenchymal Transition in Esophageal Squamous Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2023, 50(9): 847-853. DOI: 10.3971/j.issn.1000-8578.2023.22.1246 |
[3] | DU Jitao, CAO Jian, ZHAO Wen, WAN Xiangbin, LI Zhi. miR-325-3p Regulates Epithelial-mesenchymal Transition, Invasion and Metastasis of Gastric Cancer via Targeting CLDN1 Gene[J]. Cancer Research on Prevention and Treatment, 2021, 48(7): 686-693. DOI: 10.3971/j.issn.1000-8578.2021.20.1200 |
[4] | WANG Mengxin, LIANG Zhijie, HUANG Donglin, WAN Yan, JIANG Hongmian, LI Hongmian, CHEN Maojian, WEI Changyuan. RSV Inhibits Epithelial-mesenchymal Transition of MDA-MB-231 Cells by Down-regulating POLD1 Expression[J]. Cancer Research on Prevention and Treatment, 2021, 48(5): 445-450. DOI: 10.3971/j.issn.1000-8578.2021.20.1156 |
[5] | XU Xiaoyan, WANG Jianjun, FENG Zhikun, MEN Yingli, WANG Hui, YANG Jinhua. Correlation of JMJD3 and Epithelial-mesenchymal Transition-related Protein Expression in Breast Cancer and Clinical Significance[J]. Cancer Research on Prevention and Treatment, 2020, 47(4): 268-272. DOI: 10.3971/j.issn.1000-8578.2020.19.0433 |
[6] | WANG Zuogang, FENG Yan, YU Liang, ZHAO Ziliang, NI Jianlin, ZOU Junqing, HUANG Yang. Effects of ROR1 on Epithelial-mesenchymal Transition in Lung Cancer A549 Cells[J]. Cancer Research on Prevention and Treatment, 2018, 45(7): 458-462. DOI: 10.3971/j.issn.1000-8578.2018.17.1311 |
[7] | CUI Xiaochuan, DING Junli, WAN Xiaolian, ZHU Jianrong. Nrf2-mediated Multidrug Resistance after Epithelial-mesenchymal Transition in Lung Cancer Cells[J]. Cancer Research on Prevention and Treatment, 2015, 42(05): 432-435. DOI: 10.3971/j.issn.1000-8578.2015.05.002 |
[8] | KONG Xianglin, CHENG Xianshuo, YANG Zhibin, LI Yunfeng. Contribution of Epithelial-mesenchymal Transition to Vasculogenic Mimicry[J]. Cancer Research on Prevention and Treatment, 2014, 41(04): 405-408. DOI: 10.3971/j.issn.1000-8578.2014.04.027 |
[9] | Gong Yiping, Qi Chubo, Wang Mingwei, Chen Chuang, Zhao Demian, Xu Juan, Shao Jun, Cheng Hongtao, Xia Heshun. Prognosis of Triple-negative Breast Cancer and Its Relevance to Epithelial-mesenchymal Transitions[J]. Cancer Research on Prevention and Treatment, 2012, 39(02): 173-176. DOI: 10.3971/j.issn.1000-8578.2012.02.014 |
[10] | DENG Qin-fang, ZHOU Cai-cun, SU Chun-xia. Clinicopathologic Features and Epidermal Growth Factor Receptor Mutations Associated with Epithelial-mesenchymal Transition in Non-small Cell Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2008, 35(04): 258-262. DOI: 10.3971/j.issn.1000-8578.2752 |