Advanced Search
XU Qing, YANG Min, LUO Shineng. Recent Advances in Radionuclide-labeled Analogues of Exendin-4 for Insulinoma Imaging[J]. Cancer Research on Prevention and Treatment, 2015, 42(04): 407-411. DOI: 10.3971/j.issn.1000-8578.2015.04.020
Citation: XU Qing, YANG Min, LUO Shineng. Recent Advances in Radionuclide-labeled Analogues of Exendin-4 for Insulinoma Imaging[J]. Cancer Research on Prevention and Treatment, 2015, 42(04): 407-411. DOI: 10.3971/j.issn.1000-8578.2015.04.020

Recent Advances in Radionuclide-labeled Analogues of Exendin-4 for Insulinoma Imaging

More Information
  • Received Date: April 16, 2014
  • Revised Date: June 05, 2014
  • Insulinoma is one of the most common pancreatic endocrine neoplasm and is difficult to be detected by typical technology. Radionuclide imaging methods such as SPECT and PET have provided a new technology for insulinoma diagnosis with advantages of non-invasive, high sensitivity and specificity. Glucagon-like peptide-1 receptor(GLP-1R) is an attractive target for imaging due to its overexpression in insulinoma. Exendin-4, the agonist of GLP-1R, could specifically bind to the receptor. This paper reviews the progress of radionuclide-labeled Exendin-4 analogs in insulinoma imaging.
  • [1]
    Okabayashi T, Shima Y, Sumiyoshi T, et al. Diagnosis and management of insulinoma[J]. World J Gastroenterol, 2013, 19(6): 82 9-37.
    [2]
    Ehehalt F, Saeger HD, Schmidt CM, et al. Neuroendocrine tumors of the pancreas[J]. Oncologist, 2009, 14(5): 456-67.
    [3]
    Chatziioannou A, Kehagias D, Mourikis D, et al. Imaging and localization of pancreatic insulinomas[J]. Clin Imaging, 2001, 25 (4): 275-83.
    [4]
    Placzkowski KA, Vella A, Thompson GB, et al. Secular trends in the presentation and management of functioning insulinoma at the Mayo Clinic, 1987-2007[J]. J Clin Endocrinol Metab, 2009, 94 (4): 1069-73.
    [5]
    Nöldge G, Weber MA, Ritzel RA, et al. Invasive diagnostic procedures for insulinomas of the pancreas[J]. Radiologe, 2009, 49 (3): 224-32.
    [6]
    Guettier JM, Kam A, Chang R, et al. Localization of insulinomas to regions of the pancreas by intraarterial calcium stimulation: the NIH experience[J]. J Clin Endocrinol Metab, 2009, 94(4): 10 74-80.
    [7]
    Zimmer T, Stölzel U, Bäder M, et al. Endoscopic ultrasonography and somatostatin receptor scintigraphy in the preoperative localistation of insulinomas and gastrinomas[J]. Gut, 1996, 39(4): 56 2-8.
    [8]
    Reubi JC, Waster B. Concomintant expression of several peptide receptors in neuroendocrine tumours: molecure basis for in vivo multireceptor tumour targeting[J]. Eur J Nucl Med Mol Imaging, 20 03, 30(5): 781-93.
    [9]
    Zhang Y, Chen W. Radiolabeled glucagon-like peptide-1 analogues: a new pancreatic β-cell imaging agent[J]. Nucl Med Commun, 20 12, 33(3): 223-7.
    [10]
    Körner M, Stöckli M, Waser B, et al. GLP-1 receptor expression in human tumors and human normal tissues: potential for in vivo targeting[J]. J Nucl Med, 2007, 48(5): 736-43.
    [11]
    Deacon CF, Johnson AH, Holst JJ. Degradation of glucagonlike pep-tide-1 by human plasma in-vitro yields an N-terminally truncated pep-tide that is a major endogenous metabolite in vivo[J]. J Clin Endocrinol Metab, 1995, 80(3): 952-7.
    [12]
    Islam D, Zhang N, Wang P, et al. Epac is involved in cAMPstimulated proglucagon expression and hormone production but not hormone secretion in pancreatic alpha- and intestinal L-cell lines[J]. Am J Physiol Endocfinol Metab, 2009, 296(1): E174-81.
    [13]
    Bhavsar S, Mudaliar S, Cherrington A. Evolution of exenatide as a diabetes therapeutic[J]. Curr Diabetes Rev, 2013, 9(2): 161-93.
    [14]
    Best JH, Romley JA, Goldman DP, et al. Expenditures for medicaid patients treated with exenatide compared with other diabetes management regimens[J]. Am J Manag Care, 2012, 18 (8 Suppl): s191-202.
    [15]
    Underwood CR, Garibay P, Knudsen LB, et al. Crystal structure of giucagun-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-reptor[J]. J Biol Chem, 2010, 285(1): 72 3-30.
    [16]
    Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, all exendin-3 analogue, from heloderma suspecturn Venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas[J]. J Biol Chem, 1992, 267(11): 74 02-5.
    [17]
    Gotthardt M, Lalyko G, van Eerd-Vismale J, et al. A new technique for in vivo imaging of specific GLP-1 binding sites: first results in small rodents[J]. Regul Pept, 2006, 137(3): 162-7.
    [18]
    Wild D, Béhé M, Wicki A, et al. [Lys40(Ahx-DTPA- 11 1In)NH2]exendin-4, a very promising ligand for glucagonlike peptide-1 (GLP-1) receptor targeting[J]. J Nucl Med, 2006, 47 (12): 2025-33.
    [19]
    Wicki A, Wild D, Storch D, et al. [Lys40(Ahx-DTPA-111In)NH2]- Exendin-4 is a highly efficient radiotherapeutic for glucagon-Like peptide-1 receptor targeted therapy for insulinoma[J]. Clin Cancer Res, 2007, 13(12): 3696-705.
    [20]
    Wild D, Mäcke H, Christ E, et al. Glucagon-like peptide 1-receptor scans to localize occult insulinomas[J]. N Engl J Med, 2008, 35 9(7): 766-8.
    [21]
    Christ E, Wild D, Forrer F, et al. Glucagon-like peptide-1 receptor imaging for localization of insulinomas[J]. J Clin Endocrinol Metab, 2009, 94(11): 4398-405.
    [22]
    Christ E, Forrer F, Wild D, et al. Glucagon-like peptide 1 receptor (GLP-1R) imaging for the preoperative localization of benign insulinomas in 30 patients[J]. Neuroendocrinology, 2012, 96 (suppl 1): 24.
    [23]
    Wild D, Christ E, Caplin ME, et al. Glucagon-like peptide-1 versus somatostatin receptor targeting reveals 2 distinct forms of malignant insulinomas[J]. J Nucl Med, 2011, 52(7): 1073-8.
    [24]
    Wi ld D, Wi cki A, Mans i R, e t al . Exendin-4-ba s ed radiopharmaceuticals for glucagonlike peptide-1 receptor PET/CT and SPECT/CT[J]. J Nucl Med, 2010, 51(7): 1059-67.
    [25]
    Sowa-Staszczak A, Pach D, Miko?ajczak R, et al. Glucagon-like peptide-1 receptor imaging with [Lys40(Ahx-HYNIC- 99mTc/ EDDA) NH2]-exendin-4 for the detection of insulinoma[J]. Eur J Nucl Med Mol Imaging, 2013, 40(4): 524-31.
    [26]
    Martin WH, Delbeke D, Patton JA, et al. Detection of malignancies with SPECT versus PET, with 2-[fluorine-18]fluoro- 2- deoxy-d-glucose[J]. Radiology, 1996, 198(1): 225-31.
    [27]
    Kumar R, Dhanpathi H, Basu S, et al. Oncologic PET tracers beyond [(18)F]FDG and the novel quantitative approaches in PET imaging[J]. Q J Nucl Med Mol Imaging, 2008, 52(1): 50-65.
    [28]
    Shokeen M, Anderson CJ. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET)[J]. Acc Chem Res, 2009, 42(7): 832-41.
    [29]
    Wu Z, Todorov I, Li L, et al. In vivo imaging of transplanted islets with 64Cu-DO3A-VS-Cys40-Exendin-4 by targeting GLP-1 receptor[J]. Bioconjug Chem, 2011, 22(8): 1587-94.
    [30]
    Liu Z, Yan Y, Liu S, et al. (18)F, (64)Cu, and (68)Ga labeled RGD-bombesin heterodimeric peptides for PET imaging of breast cancer[J]. Bioconjug Chem, 2009, 20(5): 1016-25.
    [31]
    Kiesewetter DO, Gao H, Ma Y, et al. 18F-radiolabeled analogs of exendin-4 for PET imaging of GLP-1 in insulinoma[J]. Eur J Nucl Med Mol Imaging, 2012, 39(3): 463-73.
    [32]
    Kiesewetter DO, Guo N, Guo J, et al. Evaluation of an [(18)F]AlFNOTA analog of exendin-4 for imaging of GLP-1 receptor in nsulinoma[J]. Theranostics, 2012, 2(10): 999-1009.
    [33]
    Wu Z, Liu S, Hassink M, et al. Development and evaluation of 18F-TTCO-Cys40-Exendin-4:a PET probe for imaging transplanted islets[J]. J Nucl Med, 2013, 54(2): 244-51.
    [34]
    Brom M, Oyen WJ, Joosten L, et al. 68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET[J]. Eur J Nucl Med Mol Imaging, 2010, 37(7): 1345-55.
    [35]
    Vegt E, Eek A, Oyen WJ, et al. Albumin-derived peptides efficiently reduce renal uptake of radiolabelled peptides[J]. Eur J Nucl Med Mol Imaging, 2010, 37(2): 226-34.

Catalog

    Article views (1443) PDF downloads (694) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return