Advanced Search
QIAO Wanjia, DONG Na, LIU Xiaojun. Research Progress in Improving Efficacy of Radiotherapy by Targeting Glutamine Metabolism[J]. Cancer Research on Prevention and Treatment, 2023, 50(3): 298-302. DOI: 10.3971/j.issn.1000-8578.2023.22.0788
Citation: QIAO Wanjia, DONG Na, LIU Xiaojun. Research Progress in Improving Efficacy of Radiotherapy by Targeting Glutamine Metabolism[J]. Cancer Research on Prevention and Treatment, 2023, 50(3): 298-302. DOI: 10.3971/j.issn.1000-8578.2023.22.0788

Research Progress in Improving Efficacy of Radiotherapy by Targeting Glutamine Metabolism

Funding: 

Natural Science Foundation of Gansu Province 21JR7RA618

More Information
  • Corresponding author:

    LIU Xiaojun, E-mail: lxjmail2008@126.com

  • Received Date: July 17, 2022
  • Revised Date: September 27, 2022
  • Available Online: January 12, 2024
  • Radiotherapy is an important treatment method for malignant tumors. Radiation resistance is the main obstacle to the therapeutic effect of radiotherapy. Cellular metabolic reprogramming is one of the main features of cancer, and it may have an important effect on the therapeutic effect of radiotherapy. Glutamine is closely related to tumor cell biosynthesis and growth. It affects radiotherapy sensitivity by producing antioxidants through decomposition. In addition, the expression patterns and functions of two isoenzymes of glutamine, namely, glutaminase (GLS) and glutaminase 2 (GLS2), are different and have an important influence on the sensitivity of radiotherapy. The utilization of glutamine metabolism in the tumor microenvironment has great research value to improve the efficacy of radiotherapy. This review describes the metabolic characteristics of glutamine in malignant tumors and the sensitization effect of glutamine inhibitors on the efficacy of radiotherapy.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Meng W, Palmer JD, Siedow M, et al. Overcoming Radiation Resistance in Gliomas by Targeting Metabolism and DNA Repair Pathways[J]. Int J Mol Sci, 2022, 23(4): 2246. doi: 10.3390/ijms23042246
    [2]
    Faubert B, Solmonson A, Deberardinis RJ. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. doi: 10.1126/science.aaw5473
    [3]
    Kodama M, Nakayama KI. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen: A shift in glutamine-derived nitrogen metabolism from glutaminolysis to de novo nucleotide biosynthesis contributes to malignant evolution of cancer[J]. Bioessays, 2020, 42(12): e2000169. doi: 10.1002/bies.202000169
    [4]
    Boysen G, Jamshidi-Parsian A, Davis MA, et al. Glutaminase inhibitor CB-839 increases radiation sensitivity of lung tumor cells and human lung tumor xenografts in mice[J]. Int J Radiat Biol, 2019, 95(4): 436-442. doi: 10.1080/09553002.2018.1558299
    [5]
    Kodama M, Nakayama KI. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen: A shift in glutamine-derived nitrogen metabolism from glutaminolysis to de novo nucleotide biosynthesis contributes to malignant evolution of cancer[J]. Bioessays, 2020, 42(12): e2000169. doi: 10.1002/bies.202000169
    [6]
    Zhao Y, Zhao X, Chen V, et al. Colorectal cancers utilize glutamine as an anaplerotic substrate of the TCA cycle in vivo[J]. Sci Rep, 2019, 9(1): 19180. doi: 10.1038/s41598-019-55718-2
    [7]
    Leone RD, Zhao L, Englert JM, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J]. Science, 2019, 366(6468): 1013-1021. doi: 10.1126/science.aav2588
    [8]
    Matés JM, Campos-Sandoval JA, Márquez J. Glutaminase isoenzymes in the metabolic therapy of cancer[J]. Biochim Biophys Acta Rev Cancer, 2018, 1870(2): 158-164. doi: 10.1016/j.bbcan.2018.07.007
    [9]
    Yu W, Yang X, Zhang Q, et al. Targeting GLS1 to cancer therapy through glutamine metabolism[J]. Clin Transl Oncol, 2021, 23(11): 2253-2268. doi: 10.1007/s12094-021-02645-2
    [10]
    Ferreira IM, Quesñay JEN, Bastos AC, et al. Structure and activation mechanism of the human liver-type glutaminase GLS2[J]. Biochimie, 2021, 185: 96-104. doi: 10.1016/j.biochi.2021.03.009
    [11]
    Saha SK, Islam SMR, Abdullah-Al-Wadud M, et al. Multiomics Analysis Reveals that GLS and GLS2 Differentially Modulate the Clinical Outcomes of Cancer[J]. J Clin Med, 2019, 8(3): 355. doi: 10.3390/jcm8030355
    [12]
    Xiang L, Mou J, Shao B, et al. Glutaminase 1 expression in colorectal cancer cells is induced by hypoxia and required for tumor growth, invasion, and metastatic colonization[J]. Cell Death Dis, 2019, 10(2): 40. doi: 10.1038/s41419-018-1291-5
    [13]
    Cao J, Zhang C, Jiang GQ, et al. Expression of GLS1 in intrahepatic cholangiocarcinoma and its clinical significance[J]. Mol Med Rep, 2019, 20(2): 1915-1924.
    [14]
    Martín-Rufián M, Nascimento-Gomes R, Higuero A, et al. Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells[J]. J Mol Med (Berl), 2014, 92(3): 277-290. doi: 10.1007/s00109-013-1105-2
    [15]
    Liu J, Zhang C, Lin M, et al. Glutaminase 2 negatively regulates the PI3K/AKT signaling and shows tumor suppression activity in human hepatocellular carcinoma[J]. Oncotarget, 2014, 5(9): 2635-2647. doi: 10.18632/oncotarget.1862
    [16]
    Zhang J, Wang C, Chen M, et al. Epigenetic silencing of glutaminase 2 in human liver and colon cancers[J]. BMC Cancer, 2013, 13: 601. doi: 10.1186/1471-2407-13-601
    [17]
    Lukey MJ, Cluntun AA, Katt WP, et al. Liver-Type Glutaminase GLS2 is a Druggable Metabolic Node in Luminal-Subtype Breast Cancer[J]. Cell Rep, 2019, 29(1): 76-88. doi: 10.1016/j.celrep.2019.08.076
    [18]
    López de la Oliva AR, Campos-Sandoval JA, Gómez-García MC, et al. Nuclear Translocation of Glutaminase GLS2 in Human Cancer Cells Associates with Proliferation Arrest and Differentiation[J]. Sci Rep, 2020, 10(1): 2259. doi: 10.1038/s41598-020-58264-4
    [19]
    Gao P, Tchernyshyov I, Chang TC, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature, 2009, 458(7239): 762-765. doi: 10.1038/nature07823
    [20]
    Bott AJ, Peng IC, Fan Y, et al. Oncogenic Myc Induces Expression of Glutamine Synthetase through Promoter Demethylation[J]. Cell Metab, 2015, 22(6): 1068-1077. doi: 10.1016/j.cmet.2015.09.025
    [21]
    Wang R, Dillon CP, Shi LZ, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation[J]. Immunity, 2011, 35(6): 871-882. doi: 10.1016/j.immuni.2011.09.021
    [22]
    Yue M, Jiang J, Gao P, et al. Oncogenic MYC Activates a Feedforward Regulatory Loop Promoting Essential Amino Acid Metabolism and Tumorigenesis[J]. Cell Rep, 2017, 21(13): 3819-3832. doi: 10.1016/j.celrep.2017.12.002
    [23]
    Deng SJ, Chen HY, Zeng Z, et al. Nutrient Stress-Dysregulated Antisense lncRNA GLS-AS Impairs GLS-Mediated Metabolism and Represses Pancreatic Cancer Progression[J]. Cancer Res, 2019, 79(7): 1398-1412. doi: 10.1158/0008-5472.CAN-18-0419
    [24]
    Lukey MJ, Greene KS, Erickson JW, et al. The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy[J]. Nat Commun, 2016, 7: 11321. doi: 10.1038/ncomms11321
    [25]
    Suzuki S, Tanaka T, Poyurovsky MV, et al. Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species[J]. Proc Natl Acad Sci U S A, 2010, 107(16): 7461-7466. doi: 10.1073/pnas.1002459107
    [26]
    Kang R, Kroemer G, Tang D. The tumor suppressor protein p53 and the ferroptosis network[J]. Free Radic Biol Med, 2019, 133: 162-168. doi: 10.1016/j.freeradbiomed.2018.05.074
    [27]
    Yao X, Li W, Fang D, et al. Emerging Roles of Energy Metabolism in Ferroptosis Regulation of Tumor Cells[J]. Adv Sci (Weinh), 2021, 8(22): e2100997. doi: 10.1002/advs.202100997
    [28]
    Xiao D, Ren P, Su H, et al. Myc promotes glutaminolysis in human neuroblastoma through direct activation of glutaminase 2[J]. Oncotarget, 2015, 6(38): 40655-40666. doi: 10.18632/oncotarget.5821
    [29]
    Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer[J]. Cancer Cell, 2020, 38(2): 167-197. doi: 10.1016/j.ccell.2020.06.001
    [30]
    Schafer FQ, Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple[J]. Free Radic Biol Med, 2001, 30(11): 1191-1212. doi: 10.1016/S0891-5849(01)00480-4
    [31]
    Navarro J, Obrador E, Pellicer JA, et al. Blood glutathione as an index of radiation-induced oxidative stress in mice and humans[J]. Free Radic Biol Med, 1997, 22(7): 1203-1209. doi: 10.1016/S0891-5849(96)00554-0
    [32]
    Peng Y, Fu S, Hu W, et al. Glutamine synthetase facilitates cancer cells to recover from irradiation-induced G2/M arrest[J]. Cancer Biol Ther, 2020, 21(1): 43-51. doi: 10.1080/15384047.2019.1665394
    [33]
    Fu S, Li Z, Xiao L, et al. Glutamine Synthetase Promotes Radiation Resistance via Facilitating Nucleotide Metabolism and Subsequent DNA Damage Repair[J]. Cell Rep, 2019, 28(5): 1136-1143. doi: 10.1016/j.celrep.2019.07.002
    [34]
    Sappington DR, Siegel ER, Hiatt G, et al. Glutamine drives glutathione synthesis and contributes to radiation sensitivity of A549 and H460 lung cancer cell lines[J]. Biochim Biophys Acta, 2016, 1860(4): 836-843. doi: 10.1016/j.bbagen.2016.01.021
    [35]
    Hu W, Zhang C, Wu R, et al. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function[J]. Proc Natl Acad Sci U S A, 2010, 107(16): 7455-7460. doi: 10.1073/pnas.1001006107
    [36]
    Mukha A, Kahya U, Dubrovska A. Targeting glutamine metabolism and autophagy: the combination for prostate cancer radiosensitization[J]. Autophagy, 2021, 17(11): 3879-3881. doi: 10.1080/15548627.2021.1962682
    [37]
    Binkley MS, Jeon Y-J, Nesselbush M, et al. Mutations Predict Lung Cancer Radiation Resistance That Can Be Targeted by Glutaminase Inhibition[J]. Cancer Discov, 2020, 10(12): 1826-1841. doi: 10.1158/2159-8290.CD-20-0282
    [38]
    Wicker CA, Hunt BG, Krishnan S, et al. Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models[J]. Cancer Lett, 2021, 502: 180-188. doi: 10.1016/j.canlet.2020.12.038
    [39]
    Wahlström T, Henriksson MA. Impact of MYC in regulation of tumor cell metabolism[J]. Biochim Biophys Acta, 2015, 1849(5): 563-569. doi: 10.1016/j.bbagrm.2014.07.004
    [40]
    Le Grand M, Mukha A, Püschel J, et al. Interplay between MycN and c-Myc regulates radioresistance and cancer stem cell phenotype in neuroblastoma upon glutamine deprivation[J]. Theranostics, 2020, 10(14): 6411-6429. doi: 10.7150/thno.42602
    [41]
    Xiang L, Xie G, Liu C, et al. Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation[J]. Biochim Biophys Acta, 2013, 1833(12): 2996-3005. doi: 10.1016/j.bbamcr.2013.08.003
    [42]
    Sitthideatphaiboon P, Galan-Cobo A, Negrao MV, et al. LKB1 Mutations in NSCLC Are Associated with KEAP1/NRF2-Dependent Radiotherapy Resistance Targetable by Glutaminase Inhibition[J]. Clin Cancer Res, 2021, 27(6): 1720-1733. doi: 10.1158/1078-0432.CCR-20-2859
    [43]
    Li B, Cao Y, Meng G, et al. Targeting glutaminase 1 attenuates stemness properties in hepatocellular carcinoma by increasing reactive oxygen species and suppressing Wnt/beta-catenin pathway[J]. EBioMedicine, 2019, 39: 239-254. doi: 10.1016/j.ebiom.2018.11.063
    [44]
    Gong L, Zhang Y, Liu C, et al. Application of Radiosensitizers in Cancer Radiotherapy[J]. Int J Nanomedicine, 2021, 16: 1083-1102. doi: 10.2147/IJN.S290438
    [45]
    Wang CC, Hwang TZ, Yang CC, et al. Impact of Parenteral Glutamine Supplement on Oncologic Outcomes in Patients with Nasopharyngeal Cancer Treated with Concurrent Chemoradiotherapy[J]. Nutrients, 2022, 14(5): 997. doi: 10.3390/nu14050997
  • Cited by

    Periodical cited type(2)

    1. 王威宇,陈一笑,白帅东,冯建有,秦雪梅,高晓霞. 柴胡不同极性部位对肝癌SMMC-7721细胞的影响及机制研究. 中草药. 2024(07): 2271-2282 .
    2. 秦庆亮. 放疗技术进展与观念更新. 中国现代医药杂志. 2023(10): 1-8 .

    Other cited types(0)

Catalog

    Article views (1350) PDF downloads (1780) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return