Citation: | ZHANG Peng. Research Progress of 3D Printing Technology for Perioperative Treatment of Osteosarcoma[J]. Cancer Research on Prevention and Treatment, 2023, 50(3): 229-235. DOI: 10.3971/j.issn.1000-8578.2023.22.0944 |
The anatomical site of osteosarcoma is generally complex. Hence, it is difficult to accurately remove osteosarcoma and retain important nerves and blood vessels around the tumor, as well as repair and reconstruct bone defects after osteosarcoma resection. 3D printing technology can "tailor" the "bone defect" after removing the irregular osteosarcoma to achieve a good therapeutic effect of limb reconstruction. This study reviews the application of 3D printing technology in the preoperative, intraoperative, and postoperative reconstruction of osteosarcoma and bone tissue engineering scaffolds. Thus, this study systematically analyzes the advantages and suggestions of 3D printing technology based on the characteristics of 3D printing to put forward references for the accurate treatments of osteosarcoma in the future.
Competing interests: The authors declare that they have no competing interests.
[1] |
Ritter J, Bielack SS. Osteosarcoma[J]. Ann Oncol, 2010, 21(Suppl 7): vii320-vii325.
|
[2] |
Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma Overview[J]. Rheumatol Ther, 2017, 4(1): 25-43. doi: 10.1007/s40744-016-0050-2
|
[3] |
Fu P, Shi Y, Chen G, et al. Prognostic Factors in Patients With Osteosarcoma With the Surveillance, Epidemiology, and End Results Database[J]. Technol Cancer Res Treat, 2020, 19: 1533033820947701.
|
[4] |
Lin YH, Jewell BE, Gingold J, et al. Osteosarcoma: Molecular Pathogenesis and iPSC Modeling[J]. Trends Mol Med, 2017, 23(8): 737-755. doi: 10.1016/j.molmed.2017.06.004
|
[5] |
Jafari F, Javdansirat S, Sanaie S, et al. Osteosarcoma: A comprehensive review of management and treatment strategies[J]. Ann Diagn Pathol, 2020, 49: 151654. doi: 10.1016/j.anndiagpath.2020.151654
|
[6] |
Ricles LM, Coburn JC, Di Prima M, et al. Regulating 3D-printed medical products[J]. Sci Transl Med, 2018, 10(461): eaan6521. doi: 10.1126/scitranslmed.aan6521
|
[7] |
Ozturk AM, Sirinturk S, Kucuk L, et al. Multidisciplinary Assessment of Planning and Resection of Complex Bone Tumor Using Patient-Specific 3D Model[J]. Indian J Surg Oncol, 2019, 10(1): 115-124. doi: 10.1007/s13193-018-0852-5
|
[8] |
Cherkasskiy L, Caffrey JP, Szewczyk AF, et al. Patient-specific 3D models aid planning for triplane proximal femoral osteotomy in slipped capital femoral epiphysis[J]. J Child Orthop, 2017, 11(2): 147-153. doi: 10.1302/1863-2548-11-170277
|
[9] |
Han Q, Zhao X, Wang C, et al. Individualized reconstruction for severe periprosthetic fractures around the tumor prosthesis of knee under assistance of 3D printing technology: A case report[J]. Medicine (Baltimore), 2018, 97(42): e12726.
|
[10] |
Zhuang YD, Zhou MC, Liu SC, et al. Effectiveness of personalized 3D printed models for patient education in degenerative lumbar disease[J]. Patient Educ Couns, 2019, 102(10): 1875-1881. doi: 10.1016/j.pec.2019.05.006
|
[11] |
Du XH, Wei H, Li P, et al. Artificial Intelligence (AI) Assisted CT/MRI Image Fusion Technique in Preoperative Evaluation of a Pelvic Bone Osteosarcoma[J]. Front Oncol, 2022, 10: 1209.
|
[12] |
Du XH, Wei H, Zhang B, et al. Experience in utilizing a novel 3D digital model with CT and MRI fusion data in sarcoma evaluation and surgical planning[J]. J Surg Oncol, 2022, 126(6): 1067-1073. doi: 10.1002/jso.26999
|
[13] |
马立敏, 张余, 周烨, 等. 3D打印技术在股骨远端骨肿瘤的应用[J]. 中国数字医学, 2013, 8(8): 70-72. doi: 10.3969/j.issn.1673-7571.2013.08.021
Ma LM, Zhang Y, Zhou Y, et al. Application of 3D Printing Technology in the Treatment of Distal Femur Bone Tumor[J]. Zhongguo Shu Zi Yi Xue, 2013, 8(8): 70-72. doi: 10.3969/j.issn.1673-7571.2013.08.021
|
[14] |
付军, 王臻, 郭征, 等. 数字化结合3D打印个体化导板的设计加工及其在骨肿瘤手术中的应用[J]. 中华创伤骨科杂志, 2015, 17(1): 50-54. doi: 10.3760/cma.j.issn.1671-7600.2015.01.012
Fu J, Wang Z, Guo Z, et al. Design and application of 3D printing guide plate in bone tumor surgery[J]. Zhonghua Chuang Shang Gu Ke Za Zhi, 2015, 17(1): 50-54. doi: 10.3760/cma.j.issn.1671-7600.2015.01.012
|
[15] |
Park JW, Kang HG, Lim KM, et al. Bone tumor resection guide using three-dimensional printing for limb salvage surgery[J]. J Surg Oncol, 2018, 118(6): 898-905. doi: 10.1002/jso.25236
|
[16] |
Wong KC, Sze LKY, Kumta SM. Complex joint-preserving bone tumor resection and reconstruction using computer navigation and 3D-printed patient-specific guides: A technical note of three cases[J]. J Orthop Transl, 2021, 29: 152-162.
|
[17] |
纪玉清, 吴玉仙, 李建民, 等. 3D打印截骨导板在股骨远端骨肉瘤肿瘤切除、假体重建术中的应用[J]. 中国骨与关节杂志, 2018, 7(7): 547-551. doi: 10.3969/j.issn.2095-252X.2018.07.014
Ji YQ, Wu YX, Li JM, et al. Clinical application of 3D printing guild plate in tumor resection and reconstruction with prosthesis in patients with distal femoral osteosarcoma[J]. Zhongguo Gu Yu Guan Jie Za Zhi, 2018, 7(7): 547-551. doi: 10.3969/j.issn.2095-252X.2018.07.014
|
[18] |
黄敏强, 丁焕文, 陈志源, 等. 3D打印导航模板辅助个性化非限制性肿瘤型假体重建术治疗膝关节周围恶性骨肿瘤的疗效[J]. 中国修复重建外科杂志, 2016, 30(7): 815-821. http://www.cnki.com.cn/Article/CJFDTotal-ZXCW201607008.htm
Huang MQ, Ding HW, Chen ZY, et al. Effect of three-dimensional printing navigation templates assisting reconstruction with personalized unrestricted total knee prosthesis for treating malignant bone tumors around knees[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2016, 30(7): 815-821. http://www.cnki.com.cn/Article/CJFDTotal-ZXCW201607008.htm
|
[19] |
牛晓颖, 高世磊, 屈国新, 等. 3D打印假体在治疗青少年股骨恶性肿瘤大段骨缺损重建中保留骨骺及关节面的应用[J]. 中国修复重建外科杂志, 2022, 36(11): 1374-1380.
Niu XY, Gao SL, Qu GX, et al. Application of three-dimensional printed prosthesis to preserve epiphysis and articular surfaces in the reconstruction of large bone defects in treatment of adolescent femur malignant tumors[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2022, 36(11): 1374-1380.
|
[20] |
杨毅, 郭卫, 杨荣利, 等. 恶性骨肿瘤保肢治疗中灭活再植技术的操作流程和常见问题[J]. 骨科, 2018, 9(3): 247-252.
Yang Y, Guo W, Yang RL, et al. Operational process and common problems of inactivated replantation technique in limb salvage treatment of malignant bone tumor[J]. Gu Ke, 2018, 9(3): 247-252.
|
[21] |
Aponte-Tinao LA, Albergo JI, Ayerza MA, et al. What Are the Complications of Allograft Reconstructions for Sarcoma Resection in Children Younger Than 10 Years at Long-term Followup?[J]. Clin Orthop Relat Res, 2018, 476(3): 548-555. doi: 10.1007/s11999.0000000000000055
|
[22] |
Fang X, Liu H, Xiong Y, et al. Total talar replacement with a novel 3D printed modular prosthesis for tumors[J]. Ther Clin Risk Manag, 2018, 14: 1897-1905. doi: 10.2147/TCRM.S172442
|
[23] |
Deng L, Zhao X, Wei C, et al. Application of a three-dimensional printed segmental scapula prosthesis in the treatment of scapula tumors[J]. J Int Med Res, 2019, 47(11): 5873-5882. doi: 10.1177/0300060519875336
|
[24] |
Zhao D, Tang F, Min L, et al. Intercalary Reconstruction of the "Ultra-Critical Sized Bone Defect" by 3D-Printed Porous Prosthesis After Resection of Tibial Malignant Tumor[J]. Cancer Manag Res, 2020, 12: 2503-2512. doi: 10.2147/CMAR.S245949
|
[25] |
Xu L, Qin H, Tan J, et al. Clinical study of 3D printed personalized prosthesis in the treatment of bone defect after pelvic tumor resection[J]. J Orthop Transl, 2021, 29: 163-169.
|
[26] |
Choy WJ, Mobbs RJ, Wilcox B, et al. Reconstruction of Thoracic Spine Using a Personalized 3D-Printed Vertebral Body in Adolescent with T9 Primary Bone Tumor[J]. World Neurosurg, 2017, 105: 1032. e13-1032. e17. doi: 10.1016/j.wneu.2017.05.133
|
[27] |
Lu Y, Chen G, Long Z, et al. Novel 3D-printed prosthetic composite for reconstruction of massive bone defects in lower extremities after malignant tumor resection[J]. J Bone Oncol, 2019, 16: 100220. doi: 10.1016/j.jbo.2019.100220
|
[28] |
屈国新, 张春蕾, 王家强, 等. 胫骨远端瘤段骨切除后3D打印钛合金假体重建术后疗效评价[J]. 中国修复重建外科杂志, 2022, 36(9): 1108-1113. http://www.cnki.com.cn/Article/CJFDTotal-ZXCW202209009.htm
Qu GX, Zhang CL, Wang JQ, et al. Effectiveness evaluation of three-dimensional printed titanium-alloy prosthesis reconstruction after distal tibia tumor segment resection[J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2022, 36(9): 1108-1113. http://www.cnki.com.cn/Article/CJFDTotal-ZXCW202209009.htm
|
[29] |
Yang H, Fang X, Xiong Y, et al. 3D Customized Biological Tibial Intramedullary Nail Fixation for the Treatment of Fracture after Massive Allograft Bone Transplantation of Tibial Osteosarcoma: A Case Report[J]. Orthop Surg, 2022, 14(6): 1241-1250. doi: 10.1111/os.13294
|
[30] |
程维, 白长双, 郝立昌. 3D打印假体技术治疗四肢骨关节肿瘤[J]. 中国矫形外科杂志, 2017, 25(9): 844-847. http://www.cnki.com.cn/Article/CJFDTotal-ZJXS201709016.htm
Cheng W, Bai CS, Hao LC. Three-dimensional printed prostheses for treatment of osteoarticular tumors of limbs[J]. Zhongguo Jiao Xing Wai Ke Za Zhi, 2017, 25(9): 844-847. http://www.cnki.com.cn/Article/CJFDTotal-ZJXS201709016.htm
|
[31] |
李卡, 李建民, 杨志平, 等. 3D打印假体结合保留骨骺技术治疗儿童骨肉瘤1例报道[J]. 中华骨与关节外科杂志, 2019, 12(5): 381-383. doi: 10.3969/j.issn.2095-9958.2019.05.013
Li K, Li JM, Yang ZP, et al. 3D-printed prosthesis combined with preservation of the epiphysis in treatment of osteosarcoma in children: a case report[J]. Zhonghua Gu Yu Guan Jie Wai Ke Za Zhi, 2019, 12(5): 381-383. doi: 10.3969/j.issn.2095-9958.2019.05.013
|
[32] |
Long J, Zhang W, Chen Y, et al. Multifunctional magnesium incorporated scaffolds by 3D-Printing for comprehensive postsurgical management of osteosarcoma[J]. Biomaterials, 2021, 275: 120950. doi: 10.1016/j.biomaterials.2021.120950
|
[33] |
Wei X, Tang Z, Wu H, et al. Biofunctional magnesium-coated Ti6Al4V scaffolds promote autophagy-dependent apoptosis in osteosarcoma by activating the AMPK/mTOR/ULK1 signaling pathway[J]. Mater Today Bio, 2021, 12: 100147. doi: 10.1016/j.mtbio.2021.100147
|
[34] |
Liu Y, Li T, Ma H, et al. 3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy[J]. Acta Biomater, 2018, 73: 531-546.
|
[35] |
Dang HP, Shabab T, Shafiee A, et al. 3D printed dual macro-, microscale porous network as a tissue engineering scaffold with drug delivering function[J]. Biofabrication, 2019, 11(3): 035014.
|
[36] |
Piard C, Baker H, Kamalitdinov T, et al. Bioprinted osteon-like scaffolds enhance in vivo neovascularization[J]. Biofabrication, 2019, 11(2): 025013.
|
[37] |
Adel-Khattab D, Giacomini F, Gildenhaar R, et al. Development of a synthetic tissue engineered three-dimensional printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro[J]. J Tissue Eng Regen Med, 2018, 12(1): 44-58.
|
[38] |
Yu J, Xu Y, Li S, et al. Three-Dimensional Printing of Nano Hydroxyapatite/Poly (ester urea) Composite Scaffolds with Enhanced Bioactivity[J]. Biomacromolecules, 2017, 18(12): 4171-4183.
|