Citation: | ZENG Yiming, FANG Wenfeng, ZHANG Li. Current Status and Future Prospects of Treatment for EGFR-Positive Non-Small Cell Lung Cancer After Resistance to EGFR-TKI[J]. Cancer Research on Prevention and Treatment, 2025, 52(6): 429-435. DOI: 10.3971/j.issn.1000-8578.2025.24.1209 |
EGFR-mutant non-small cell lung cancer (NSCLC) is a common type of lung cancer, with EGFR tyrosine kinase inhibitors (EGFR-TKIs) being the standard first-line treatment. However, most patients with NSCLC eventually develop resistance to EGFR-TKIs. Studies on the mechanism underlying EGFR-TKI resistance have driven the development of personalized and precision medicine. Current strategies to address resistance include targeted therapy, immunotherapy, and novel drug treatments. Selecting the appropriate personalized treatment plan is crucial for improving the survival rate and quality of life of patients with EGFR-mutant NSCLC. Thus, this study provides a brief review of the current status and future perspectives in the treatment of EGFR-mutant NSCLC after progression on EGFR-TKI therapy.
Competing interests: The authors declare that they have no competing interests.
[1] |
Chen J, Yang H, Teo ASM, et al. Genomic landscape of lung adenocarcinoma in East Asians[J]. Nat Genet, 2020, 52(2): 177-186. doi: 10.1038/s41588-019-0569-6
|
[2] |
Lee JK, Shin JY, Kim S, et al. Primary resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in patients with non-small-cell lung cancer harboring TKI-sensitive EGFR mutations: an exploratory study[J]. Ann Oncol, 2013, 24(8): 2080-2087. doi: 10.1093/annonc/mdt127
|
[3] |
Hayakawa D, Takahashi F, Mitsuishi Y, et al. Activation of insulin-like growth factor-1 receptor confers acquired resistance to osimertinib in non-small cell lung cancer with EGFR T790M mutation[J]. Thorac Cancer, 2020, 11(1): 140-149. doi: 10.1111/1759-7714.13255
|
[4] |
Passaro A, Jänne PA, Mok T, et al. Overcoming therapy resistance in EGFR-mutant lung cancer[J]. Nat Cancer, 2021, 2(4): 377-391. doi: 10.1038/s43018-021-00195-8
|
[5] |
Riess JW, Gandara DR, Frampton GM, et al. Diverse EGFR Exon 20 Insertions and Co-Occurring Molecular Alterations Identified by Comprehensive Genomic Profiling of NSCLC[J]. J Thorac Oncol, 2018, 13(10): 1560-1568. doi: 10.1016/j.jtho.2018.06.019
|
[6] |
Tamirat MZ, Kurppa KJ, Elenius K, et al. Structural Basis for the Functional Changes by EGFR Exon 20 Insertion Mutations[J]. Cancers (Basel), 2021, 13(5): 1120. doi: 10.3390/cancers13051120
|
[7] |
Ng KP, Hillmer AM, Chuah CT, et al. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer[J]. Nat Med, 2012, 18(4): 521-528.
|
[8] |
Su W, Zhang X, Cai X, et al. BIM deletion polymorphism predicts poor response to EGFR-TKIs in nonsmall cell lung cancer: An updated meta-analysis[J]. Medicine(Baltimore), 2019, 98(10): e14568.
|
[9] |
He J, Huang Z, Han L, et al. Mechanisms and management of 3rd-generation EGFR-TKI resistance in advanced non-small cell lung cancer (Review)[J]. Int J Oncol, 2021, 59(5): 90. doi: 10.3892/ijo.2021.5270
|
[10] |
Yun CH, Mengwasser KE, Toms AV, et al. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP[J]. Proc Natl Acad Sci U S A, 2008, 105(6): 2070-2075. doi: 10.1073/pnas.0709662105
|
[11] |
Niederst MJ, Hu H, Mulvey HE, et al. The Allelic Context of the C797S Mutation Acquired upon Treatment with Third-Generation EGFR Inhibitors Impacts Sensitivity to Subsequent Treatment Strategies[J]. Clin Cancer Res, 2015, 21(17): 3924-3933. doi: 10.1158/1078-0432.CCR-15-0560
|
[12] |
Chmielecki J, Mok T, Wu YL, et al. Analysis of acquired resistance mechanisms to osimertinib in patients with EGFR-mutated advanced non-small cell lung cancer from the AURA3 trial[J]. Nat Commun, 2023, 14(1): 1071.
|
[13] |
Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer[J]. N Engl J Med, 2018, 378(2): 113-125. doi: 10.1056/NEJMoa1713137
|
[14] |
Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J]. Science, 2007, 316(5827): 1039-1043. doi: 10.1126/science.1141478
|
[15] |
Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors[J]. Sci Transl Med, 2011, 3(75): 75ra26.
|
[16] |
Oxnard GR, Hu Y, Mileham KF, et al. Assessment of Resistance Mechanisms and Clinical Implications in Patients With EGFR T790M-Positive Lung Cancer and Acquired Resistance to Osimertinib[J]. JAMA Oncol, 2018, 4(11): 1527-1534. doi: 10.1001/jamaoncol.2018.2969
|
[17] |
Garon EB, Hellmann MD, Rizvi NA, et al. Five-Year Overall Survival for Patients With Advanced Non‒Small-Cell Lung Cancer Treated With Pembrolizumab: Results From the Phase I KEYNOTE-001 Study[J]. J Clin Oncol, 2019, 37(28): 2518-2527. doi: 10.1200/JCO.19.00934
|
[18] |
Huang H, Zhu X, Yu Y, et al. EGFR mutations induce the suppression of CD8+ T cell and anti-PD-1 resistance via ERK1/2-p90RSK-TGF-β axis in non-small cell lung cancer[J]. J Transl Med, 2024, 22(1): 653. doi: 10.1186/s12967-024-05456-5
|
[19] |
Chen N, Fang W, Zhan J, et al. Upregulation of PD-L1 by EGFR Activation Mediates the Immune Escape in EGFR-Driven NSCLC: Implication for Optional Immune Targeted Therapy for NSCLC Patients with EGFR Mutation[J]. J Thorac Oncol, 2015, 10(6): 910-923. doi: 10.1097/JTO.0000000000000500
|
[20] |
Socinski MA, Nishio M, Jotte RM, et al. IMpower150 Final Overall Survival Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in First-Line Metastatic Nonsquamous NSCLC[J]. J Thorac Oncol, 2021, 16(11): 1909-1924. doi: 10.1016/j.jtho.2021.07.009
|
[21] |
Park S, Kim TM, Han JY, et al. Phase Ⅲ, Randomized Study of Atezolizumab Plus Bevacizumab and Chemotherapy in Patients With EGFR- or ALK-Mutated Non-Small-Cell Lung Cancer (ATTLAS, KCSG-LU19-04)[J]. J Clin Oncol, 2024, 42(11): 1241-1251. doi: 10.1200/JCO.23.01891
|
[22] |
Lu S, Wu L, Jian H, et al. Sintilimab plus chemotherapy for patients with EGFR-mutated non-squamous non-small-cell lung cancer with disease progression after EGFR tyrosine-kinase inhibitor therapy (ORIENT-31): second interim analysis from a double-blind, randomised, placebo-controlled, phase 3 trial[J]. Lancet Respir Med, 2023, 11(7): 624-636. doi: 10.1016/S2213-2600(23)00135-2
|
[23] |
HARMONi-A Study Investigators; Fang W, Zhao Y, et al. Ivonescimab Plus Chemotherapy in Non-Small Cell Lung Cancer With EGFR Variant: A Randomized Clinical Trial[J]. JAMA, 2024, 332(7): 561-570. doi: 10.1001/jama.2024.10613
|
[24] |
Rangachari D, To C, Shpilsky JE, et al. EGFR-Mutated Lung Cancers Resistant to Osimertinib through EGFR C797S Respond to First-Generation Reversible EGFR Inhibitors but Eventually Acquire EGFR T790M/C797S in Preclinical Models and Clinical Samples[J]. J Thorac Oncol, 2019, 14(11): 1995-2002. doi: 10.1016/j.jtho.2019.07.016
|
[25] |
Arulananda S, Do H, Musafer A, et al. Combination Osimertinib and Gefitinib in C797S and T790M EGFR-Mutated Non-Small Cell Lung Cancer[J]. J Thorac Oncol, 2017, 12(11): 1728-1732. doi: 10.1016/j.jtho.2017.08.006
|
[26] |
Wang Y, Yang N, Zhang Y, et al. Effective Treatment of Lung Adenocarcinoma Harboring EGFR-Activating Mutation, T790M, and cis-C797S Triple Mutations by Brigatinib and Cetuximab Combination Therapy[J]. J Thorac Oncol, 2020, 15(8): 1369-1375. doi: 10.1016/j.jtho.2020.04.014
|
[27] |
Oxnard GR, Yang JC, Yu H, et al. TATTON: a multi-arm, phase Ⅰb trial of osimertinib combined with selumetinib, savolitinib, or durvalumab in EGFR-mutant lung cancer[J]. Ann Oncol, 2020, 31(4): 507-516. doi: 10.1016/j.annonc.2020.01.013
|
[28] |
Fang H, Wu Y, Xiao Q, et al. Design, synthesis and evaluation of the Brigatinib analogues as potent inhibitors against tertiary EGFR mutants (EGFRdel19/T790M/C797S and EGFRL858R/T790M/C797S)[J]. Bioorg Med Chem Lett, 2022, 72: 128729. doi: 10.1016/j.bmcl.2022.128729
|
[29] |
Ahm MJ, De Marinis F, Bonanno L, et al. MET biomarker-based preliminary efficacy analysis in SAVANNAH: savolitinib + osimertinib in EGFRm NSCLC post-osimertinib[J]. J Thorac Oncol, 2022, 17(9): S469-S470.
|
[30] |
F Smit E, Dooms C, Raskin J, et al. INSIGHT 2: a phase Ⅱ study of tepotinib plus osimertinib in MET-amplified NSCLC and first-line osimertinib resistance[J]. Future Oncol, 2022, 18(9): 1039-1054. doi: 10.2217/fon-2021-1406
|
[31] |
Yu HA, Goldberg SB, Le X, et al. Biomarker-Directed Phase Ⅱ Platform Study in Patients With EGFR Sensitizing Mutation-Positive Advanced/Metastatic Non-Small Cell Lung Cancer Whose Disease Has Progressed on First-Line Osimertinib Therapy (ORCHARD)[J]. Clin Lung Cancer, 2021, 22(6): 601-606. doi: 10.1016/j.cllc.2021.06.006
|
[32] |
Zhou Q, Meng X, Sun L, et al. Efficacy and Safety of KRASG12C Inhibitor IBI351 Monotherapy in Patients With Advanced NSCLC: Results From a Phase 2 Pivotal Study[J]. J Thorac Oncol, 2024, 19(12): 1630-1639. doi: 10.1016/j.jtho.2024.08.005
|
[33] |
Gautschi O, Milia J, Cabarrou B, et al. Targeted Therapy for Patients with BRAF-Mutant Lung Cancer: Results from the European EURAF Cohort[J]. J Thorac Oncol, 2015, 10(10): 1451-1457. doi: 10.1097/JTO.0000000000000625
|
[34] |
Mazieres J, Cropet C, Montané L, et al. Vemurafenib in non-small-cell lung cancer patients with BRAFV600 and BRAFnonV600 mutations[J]. Ann Oncol, 2020, 31(2): 289-294. doi: 10.1016/j.annonc.2019.10.022
|
[35] |
Fu Z, Li S, Han S, et al. Antibody drug conjugate: the "biological missile" for targeted cancer therapy[J]. Signal Transduct Target Ther, 2022, 7(1): 93. doi: 10.1038/s41392-022-00947-7
|
[36] |
Shimizu T, Sands J, Yoh K, et al. First-in-Human, Phase Ⅰ Dose-Escalation and Dose-Expansion Study of Trophoblast Cell-Surface Antigen 2-Directed Antibody-Drug Conjugate Datopotamab Deruxtecan in Non-Small-Cell Lung Cancer: TROPION-PanTumor01[J]. J Clin Oncol, 2023, 41(29): 4678-4687. doi: 10.1200/JCO.23.00059
|
[37] |
Paz-Ares L, Ahn MJ, Lisberg AE, et al. 1314MO TROPION-Lung05: Datopotamab deruxtecan (Dato-DXd) in previously treated non-small cell lung cancer (NSCLC) with actionable genomic alterations (AGAs)[J]. Ann Oncol, 34(suppl_2): S755-S756.
|
[38] |
Criscitiello C, Morganti S, Curigliano G. Antibody-drug conjugates in solid tumors: a look into novel targets[J]. J Hematol Oncol, 2021, 14(1): 20. doi: 10.1186/s13045-021-01035-z
|
[39] |
Passaro A, Wang J, Wang Y, et al. Amivantamab plus chemotherapy with and without lazertinib in EGFR-mutant advanced NSCLC after disease progression on osimertinib: primary results from the phase Ⅲ MARIPOSA-2 study[J]. Ann Oncol, 2024, 35(1): 77-90. doi: 10.1016/j.annonc.2023.10.117
|
[40] |
Eno MS, Brubaker JD, Campbell JE, et al. Discovery of BLU-945, a Reversible, Potent, and Wild-Type-Sparing Next-Generation EGFR Mutant Inhibitor for Treatment-Resistant Non-Small-Cell Lung Cancer[J]. J Med Chem, 2022, 65(14): 9662-9677. doi: 10.1021/acs.jmedchem.2c00704
|
[41] |
Elamin YY, Nagasaka M, Shum E, et al. BLU-945 monotherapy and in combination with osimertinib(OSI) in previously treated patients with advanced EGFR-mutant(EGFRm) NSCLC in the phase 1/2 SYMPHONY study[J]. J Clin Oncol, 2023, 41(16_suppl): 9011. doi: 10.1200/JCO.2023.41.16_suppl.9011
|
[1] | HUANG Qing, XUE Chang, HU Sheng. Development on Cancer Therapeutic Drugs Approved by FDA in 2023[J]. Cancer Research on Prevention and Treatment, 2024, 51(7): 542-545. DOI: 10.3971/j.issn.1000-8578.2024.24.0040 |
[2] | ZHENG Yu, PAN Hongming. Progress of Targeted Therapy and Immunotherapy for Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2024, 51(4): 234-239. DOI: 10.3971/j.issn.1000-8578.2024.23.1257 |
[3] | CHEN Jiachen, WU Tingyu, XIA Weiliang. Relationship of EGFR-TKI Targeted Therapy and Pyroptosis in Non-small Cell Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(12): 1185-1190. DOI: 10.3971/j.issn.1000-8578.2023.23.0310 |
[4] | JI Xiaojun, ZHAO Tingli, MIAO Lei, SI Yaxuan, WU Jian, XU Dan. Progress in Development of Targeted Therapeutic Drugs for Acute Myeloid Leukemia[J]. Cancer Research on Prevention and Treatment, 2023, 50(4): 413-421. DOI: 10.3971/j.issn.1000-8578.2023.22.1056 |
[5] | LIU Shanting, QIN Jiali, FAN Jie. Dawn of Advanced Thyroid Cancer Therapy: Targeted Therapy and Immunotherapy[J]. Cancer Research on Prevention and Treatment, 2023, 50(1): 6-11. DOI: 10.3971/j.issn.1000-8578.2023.22.0869 |
[6] | YANG Junyuan, CAI Hongbing. Countermeasures and Mechanisms of Drug Resistance in Immunotherapy for Cervical Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(9): 886-892. DOI: 10.3971/j.issn.1000-8578.2022.22.0162 |
[7] | ZHANG Jianning, LIU Congwei. Progress of Novel Treatment Options for Glioma[J]. Cancer Research on Prevention and Treatment, 2022, 49(6): 505-513. DOI: 10.3971/j.issn.1000-8578.2022.21.1514 |
[8] | YANG Changliang, ZHANG Shuang, LIU Jingjing, LI Shuang, CHENG Ying. New Immune Checkpoint: Advances in Immunotherapy for Malignant Tumors[J]. Cancer Research on Prevention and Treatment, 2018, 45(12): 1027-1035. DOI: 10.3971/j.issn.1000-8578.2018.18.0545 |
[9] | CHEN Rui, ZHAO Da, WANG Li'na. Mechanism and Strategies on Drug Resistance of Non-small Cell Lung Cancer to EGFR-TKI[J]. Cancer Research on Prevention and Treatment, 2017, 44(3): 225-230. DOI: 10.3971/j.issn.1000-8578.2017.03.014 |
[10] | FENG Chengjun, LIU Xiaoke, LI Xiaoyu, WANG Yongsheng. Progress of Zoledronic Acid Combined with Targeted or Immunomodulatory Drugs in Antitumor Research[J]. Cancer Research on Prevention and Treatment, 2015, 42(08): 843-847. DOI: 10.3971/j.issn.1000-8578.2015.08.020 |