Citation: | ZHOU Yan, DING Jianmin, WANG Yandong, JING Xiang. Current Status and Challenges of Ultrasound-Guided Ablation Therapy for Liver Cancer[J]. Cancer Research on Prevention and Treatment, 2025, 52(4): 274-280. DOI: 10.3971/j.issn.1000-8578.2025.24.1070 |
Ultrasound-guided local ablation therapy for liver tumors has extensive clinical application because of its minimal invasiveness, proven effectiveness, low complication rates, and suitability for repeat treatments. Ultrasound-guided interventional therapy has continuously evolved in terms of the following: technological advancements, from the initial utilization of percutaneous ethanol injection to thermal ablation therapies exemplified by radiofrequency ablation and microwave ablation and presently advancing toward emerging techniques such as irreversible electroporation; imaging methods, from conventional ultrasound guidance to contrast-enhanced ultrasound and fusion imaging for precise guidance and assessment; supplementary strategies, from monotherapy to auxiliary method and synergistic therapy; and innovative treatment concepts, from early-stage small hepatocellular carcinoma to intermediate and even large liver cancers. The development of ultrasound-guided local ablation of liver cancers has progressed from an initial phase of rapid advancement to a mature stage characterized by further enhancements. This article provides a comprehensive overview of the status of technical equipment, treatment processes, efficacy, complications, and challenges encountered in ultrasound-guided local ablation for liver tumors, with the objective of offering valuable insights for interventional ultrasound physicians.
Competing interests: The authors declare that they have no competing interests.
[1] |
Alonzo M, Bos A, Bennett S, et al. The EmprintTM ablation system with ThermosphereTM technology: one of the newer next-generation microwave ablation technologies[J]. Semin Intervent Radiol, 2015, 32(4): 335-338. doi: 10.1055/s-0035-1564811
|
[2] |
He J, Shen M, Ye X, et al. Expert consensus on perioperative management for liver tumors treated with co-ablation system therapy[J]. Asia Pac J Oncol Nurs, 2024, 11(11): 100591. doi: 10.1016/j.apjon.2024.100591
|
[3] |
Lee DH, Lee MW, Kim PN, et al. Outcome of no-touch radiofrequency ablation for small hepatocellular carcinoma: a multicenter clinical trial[J]. Radiology, 2021, 301(1): 229-236. doi: 10.1148/radiol.2021210309
|
[4] |
Kim SW, Lee MJ, Kim JH, et al. Clinical feasibility of radiofrequency ablation using novel adjustable separable electrodes with a multipurpose needle for treating small hepatocellular carcinomas: a prospective single center study[J]. Int J Hyperthermia, 2023, 40(1): 2235102. doi: 10.1080/02656736.2023.2235102
|
[5] |
Aycock KN, Davalos RV. Irreversible electroporation: background, theory, and review of recent developments in clinical oncology[J]. Bioelectricity, 2019, 1(4): 214-234. doi: 10.1089/bioe.2019.0029
|
[6] |
Tarantino L, Busto G, Nasto A, et al. Electrochemotherapy of cholangiocellular carcinoma at hepatic hilum: A feasibility study[J]. Eur J Surg Oncol, 2018, 44(10): 1603-1609. doi: 10.1016/j.ejso.2018.06.025
|
[7] |
Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update[J]. J Hepatol, 2022, 76(3): 681-693. doi: 10.1016/j.jhep.2021.11.018
|
[8] |
Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380. doi: 10.1002/hep.29086
|
[9] |
中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南 (2024 年版)[J]. 肿瘤防治研究, 2024, 51(6): 495-526. [National Health Commission of the People’s Republic of China. Standardization for Diagnosis and Treatment of Primary Hepatic Carcinoma(2024 Edition)[J]. Zhong Liu Fang Zhi Yan Jiu, 2024, 51(6): 495-526.] doi: 10.3971/j.issn.1000-8578.2024.06.0001
National Health Commission of the People’s Republic of China. Standardization for Diagnosis and Treatment of Primary Hepatic Carcinoma(2024 Edition)[J]. Zhong Liu Fang Zhi Yan Jiu, 2024, 51(6): 495-526. doi: 10.3971/j.issn.1000-8578.2024.06.0001
|
[10] |
Yang W, Yan K, Wu GX, et al. Radiofrequency ablation of hepatocellular carcinoma in difficult locations: Strategies and long-term outcomes[J]. World J Gastroenterol, 2015, 21(5): 1554-1566. doi: 10.3748/wjg.v21.i5.1554
|
[11] |
Makovich Z, Logemann J, Chen L, et al. Liver tumor ablation in difficult locations: microwave ablation of perivascular and subdiaphragmatic hepatocellular carcinoma[J]. Clin Imaging, 2021, 71: 170-177. doi: 10.1016/j.clinimag.2020.11.010
|
[12] |
Waldherr C, Berclaz G, Altermatt HJ, et al. Tomosynthesis-guided vacuum-assisted breast biopsy: A feasibility study[J]. Eur Radiol, 2016, 26(6): 1582-1589. doi: 10.1007/s00330-015-4009-4
|
[13] |
Pregler B, Beyer LP, Wiesinger I, et al. Microwave ablation of large HCC lesions: Added value of CEUS examinations for ablation success control[J]. Clin Hemorheol Microcirc, 2017, 64(3): 483-490. doi: 10.3233/CH-168113
|
[14] |
Eisenbrey JR, Gabriel H, Savsani E, et al. Contrast-enhanced ultrasound (CEUS) in HCC diagnosis and assessment of tumor response to locoregional therapies[J]. Abdom Radiol (NY), 2021, 46(8): 3579-3595. doi: 10.1007/s00261-021-03059-y
|
[15] |
Meloni MF, Francica G, Chiang J, et al. Use of Contrast‐Enhanced Ultrasound in Ablation Therapy of HCC: Planning, Guiding, and Assessing Treatment Response[J]. J Ultrasound Med, 2021, 40(5): 879-894. doi: 10.1002/jum.15471
|
[16] |
Lyons GR, Pua BB. Ablation planning software for optimizing treatment: challenges, techniques, and applications[J]. Tech Vasc Interv Radiol, 2019, 22(1): 21-25. doi: 10.1053/j.tvir.2018.10.005
|
[17] |
An C, Li X, Zhang M, et al. 3D visualization ablation planning system assisted microwave ablation for hepatocellular carcinoma (Diameter> 3): a precise clinical application[J]. BMC Cancer, 2020, 20(1): 44. doi: 10.1186/s12885-020-6519-y
|
[18] |
You Y, Zhang M, Li K, et al. Feasibility of 3D US/CEUS-US/CEUS fusion imaging-based ablation planning in liver tumors: a retrospective study[J]. Abdom Radiol (NY), 2021, 46(6): 2865-2874. doi: 10.1007/s00261-020-02909-5
|
[19] |
Li C, Zhu A. Application of image fusion in diagnosis and treatment of liver cancer[J]. Appl Sci, 2020, 10(3): 1171. doi: 10.3390/app10031171
|
[20] |
Zhou Y, Wang Y, Wang F, et al. Additional diagnostic value of fusion imaging of CEUS and first CEUS of invisible hepatic lesions≤ 2 cm[J]. J Ultrasound Med, 2021, 40(6): 1173-1181. doi: 10.1002/jum.15498
|
[21] |
Carriero S, Della Pepa G, Monfardini L, et al. Role of fusion imaging in image-guided thermal ablations[J]. Diagnostics (Basel), 2021, 11(3): 549. doi: 10.3390/diagnostics11030549
|
[22] |
Minami Y, Kudo M. Ultrasound fusion imaging technologies for guidance in ablation therapy for liver cancer[J]. J Med Ultrason (2001), 2020, 47(2): 257-263.
|
[23] |
Zhou H, Yang G, Jing X, et al. Predictive value of ablative margin assessment after microwave ablation for local tumor progression in medium and large hepatocellular carcinoma: computed tomography–computed tomography image fusion method versus side-by-side method[J]. J Comput Assist Tomogr, 2023, 47(1): 31-37. doi: 10.1097/RCT.0000000000001395
|
[24] |
Xu E, Li K, Long Y, et al. Intra-procedural CT/MR-ultrasound fusion imaging helps to improve outcomes of thermal ablation for hepatocellular carcinoma: results in 502 nodules[J]. Ultraschall Med, 2021, 42(2): e9-e19. doi: 10.1055/a-1021-1616
|
[25] |
Wang F, Zhang Q, Yan K, et al. 3D-CEUS/MRI–CEUS fusion imaging vs 2D-CEUS after locoregional therapies for hepatocellular carcinoma: a multicenter prospective study of therapeutic response evaluation[J]. Eur Radiol, 2025, 35(1): 453-462.
|
[26] |
Ding J, Wang D, Zhou Y, et al. A novel mono-modality fusion imaging method based on three-dimensional contrast-enhanced ultrasound for the evaluation of ablation margins after microwave ablation of hepatocellular carcinoma[J]. J Gastrointest Oncol, 2021, 12(1): 184-195. doi: 10.21037/jgo-21-46
|
[27] |
Long H, Zhou X, Zhang X, et al. 3D fusion is superior to 2D point-to-point contrast-enhanced US to evaluate the ablative margin after RFA for hepatocellular carcinoma[J]. Eur Radiol, 2024, 34(2): 1247-1257.
|
[28] |
Chang Y, Jeong SW, Young Jang J, et al. Recent updates of transarterial chemoembolilzation in hepatocellular carcinoma[J]. Int J Mol Sci, 2020, 21(21): 8165. doi: 10.3390/ijms21218165
|
[29] |
Zhang K, Mu L, Ren Y, et al. Comparing Long-Term survival benefits of hepatocellular carcinoma between thermal ablation monotherapy and combined therapy with transarterial Chemoembolization: A propensity score matched study[J]. Eur J Radiol, 2023, 167: 111092. doi: 10.1016/j.ejrad.2023.111092
|
[30] |
Kim JH, Lee JY, Yu SJ, et al. Fusion imaging-guided radiofrequency ablation with artificial ascites or pleural effusion in patients with hepatocellular carcinomas: the feasibility rate and mid-term outcome[J]. Int J Hyperthermia, 2023, 40(1): 2213424. doi: 10.1080/02656736.2023.2213424
|
[31] |
Guo J, Liang S, Liu H, et al. Ultrasound-MR fusion imaging combined with intraductal cooling via PTCD during microwave ablation of perihilar liver tumors: a retrospective pilot study[J]. Int J Hyperthermia, 2024, 41(1): 2361708.
|
[32] |
Kudo M. Adjuvant atezolizumab-bevacizumab after resection or ablation for hepatocellular carcinoma[J]. Liver Cancer, 2023, 12(3): 189-197. doi: 10.1159/000531225
|
[33] |
Bruix J, Sherman M, American Association for the Study of Liver Diseases. Management of Hepatocellular Carcinoma: An Update[J]. Hepatology, 2011, 53(3): 1020-1022. doi: 10.1002/hep.24199
|
[34] |
Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314. doi: 10.1016/S0140-6736(18)30010-2
|
[35] |
Takayama T, Hasegawa K, Izumi N, et al. Surgery versus radiofrequency ablation for small hepatocellular carcinoma: a randomized controlled trial (SURF trial)[J]. Liver Cancer, 2021, 11(3): 209-218.
|
[36] |
Xia Y, Li J, Liu G, et al. Long-term Effects of Repeat Hepatectomy vs Percutaneous Radiofrequency Ablation Among Patients With Recurrent Hepatocellular Carcinoma: A Randomized Clinical Trial[J]. JAMA Oncol, 2020, 6(2): 255-263. doi: 10.1001/jamaoncol.2019.4477
|
[37] |
Kariyama K, Nouso K, Hiraoka A, et al. Treatment options for solitary hepatocellular carcinoma≤ 5 cm: surgery vs ablation: a multicenter retrospective study[J]. J Liver Cancer, 2024, 24(1): 71-80. doi: 10.17998/jlc.2023.09.11
|
[38] |
Ding J, Jing X, Liu J, et al. Comparison of two different thermal techniques for the treatment of hepatocellular carcinoma[J]. Eur J Radiol, 2013, 82(9): 1379-1384. doi: 10.1016/j.ejrad.2013.04.025
|
[39] |
Yu J, Yu XL, Han ZY, et al. Percutaneous cooled-probe microwave versus radiofrequency ablation in early-stage hepatocellular carcinoma: a phase Ⅲ randomised controlled trial[J]. Gut, 2017, 66(6): 1172-1173. doi: 10.1136/gutjnl-2016-312629
|
[40] |
Facciorusso A, Abd El Aziz MA, Tartaglia N, et al. Microwave ablation versus radiofrequency ablation for treatment of hepatocellular carcinoma: a meta-analysis of randomized controlled trials[J]. Cancers (Basel), 2020, 12(12): 3796. doi: 10.3390/cancers12123796
|
[41] |
Gupta P, Maralakunte M, Kumar-M P, et al. Overall survival and local recurrence following RFA, MWA, and cryoablation of very early and early HCC: a systematic review and Bayesian network meta-analysis[J]. Eur Radiol, 2021, 31(7): 5400-5408. doi: 10.1007/s00330-020-07610-1
|
[42] |
Gupta P, Maralakunte M, Sagar S, et al. Efficacy and safety of irreversible electroporation for malignant liver tumors: a systematic review and meta-analysis[J]. Eur Radiol, 2021, 31(9): 6511-6521. doi: 10.1007/s00330-021-07742-y
|
[43] |
Meijerink MR, Ruarus AH, Vroomen LGPH, et al. Irreversible electroporation to treat unresectable colorectal liver metastases (COLDFIRE-2): a phase Ⅱ, two-center, single-arm clinical trial[J]. Radiology, 2021, 299(2): 470-480. doi: 10.1148/radiol.2021203089
|
[44] |
Jing X, Zhou Y, Ding J, et al. The learning curve for thermal ablation of liver cancers: 4, 363-Session experience for a single central in 18 years[J]. Front Oncol, 2020, 10: 540239. doi: 10.3389/fonc.2020.540239
|
[45] |
Dou J, Yu J, Cheng W, et al. Learning curve of microwave ablation for liver cancers[J]. Eur J Radiol, 2023, 158: 110613. doi: 10.1016/j.ejrad.2022.110613
|