Advanced Search
ZHOU Yan, DING Jianmin, WANG Yandong, JING Xiang. Current Status and Challenges of Ultrasound-Guided Ablation Therapy for Liver Cancer[J]. Cancer Research on Prevention and Treatment, 2025, 52(4): 274-280. DOI: 10.3971/j.issn.1000-8578.2025.24.1070
Citation: ZHOU Yan, DING Jianmin, WANG Yandong, JING Xiang. Current Status and Challenges of Ultrasound-Guided Ablation Therapy for Liver Cancer[J]. Cancer Research on Prevention and Treatment, 2025, 52(4): 274-280. DOI: 10.3971/j.issn.1000-8578.2025.24.1070

Current Status and Challenges of Ultrasound-Guided Ablation Therapy for Liver Cancer

Funding: 

National Natural Science Foundation of China (No. 82371986)

undefined

More Information
  • Corresponding author:

    JING Xiang, E-mail: dr.jingxiang@aliyun.com

  • Received Date: October 30, 2024
  • Revised Date: February 21, 2025
  • Accepted Date: February 23, 2025
  • Available Online: February 26, 2025
  • Ultrasound-guided local ablation therapy for liver tumors has extensive clinical application because of its minimal invasiveness, proven effectiveness, low complication rates, and suitability for repeat treatments. Ultrasound-guided interventional therapy has continuously evolved in terms of the following: technological advancements, from the initial utilization of percutaneous ethanol injection to thermal ablation therapies exemplified by radiofrequency ablation and microwave ablation and presently advancing toward emerging techniques such as irreversible electroporation; imaging methods, from conventional ultrasound guidance to contrast-enhanced ultrasound and fusion imaging for precise guidance and assessment; supplementary strategies, from monotherapy to auxiliary method and synergistic therapy; and innovative treatment concepts, from early-stage small hepatocellular carcinoma to intermediate and even large liver cancers. The development of ultrasound-guided local ablation of liver cancers has progressed from an initial phase of rapid advancement to a mature stage characterized by further enhancements. This article provides a comprehensive overview of the status of technical equipment, treatment processes, efficacy, complications, and challenges encountered in ultrasound-guided local ablation for liver tumors, with the objective of offering valuable insights for interventional ultrasound physicians.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Alonzo M, Bos A, Bennett S, et al. The EmprintTM ablation system with ThermosphereTM technology: one of the newer next-generation microwave ablation technologies[J]. Semin Intervent Radiol, 2015, 32(4): 335-338. doi: 10.1055/s-0035-1564811
    [2]
    He J, Shen M, Ye X, et al. Expert consensus on perioperative management for liver tumors treated with co-ablation system therapy[J]. Asia Pac J Oncol Nurs, 2024, 11(11): 100591. doi: 10.1016/j.apjon.2024.100591
    [3]
    Lee DH, Lee MW, Kim PN, et al. Outcome of no-touch radiofrequency ablation for small hepatocellular carcinoma: a multicenter clinical trial[J]. Radiology, 2021, 301(1): 229-236. doi: 10.1148/radiol.2021210309
    [4]
    Kim SW, Lee MJ, Kim JH, et al. Clinical feasibility of radiofrequency ablation using novel adjustable separable electrodes with a multipurpose needle for treating small hepatocellular carcinomas: a prospective single center study[J]. Int J Hyperthermia, 2023, 40(1): 2235102. doi: 10.1080/02656736.2023.2235102
    [5]
    Aycock KN, Davalos RV. Irreversible electroporation: background, theory, and review of recent developments in clinical oncology[J]. Bioelectricity, 2019, 1(4): 214-234. doi: 10.1089/bioe.2019.0029
    [6]
    Tarantino L, Busto G, Nasto A, et al. Electrochemotherapy of cholangiocellular carcinoma at hepatic hilum: A feasibility study[J]. Eur J Surg Oncol, 2018, 44(10): 1603-1609. doi: 10.1016/j.ejso.2018.06.025
    [7]
    Reig M, Forner A, Rimola J, et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update[J]. J Hepatol, 2022, 76(3): 681-693. doi: 10.1016/j.jhep.2021.11.018
    [8]
    Heimbach JK, Kulik LM, Finn RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma[J]. Hepatology, 2018, 67(1): 358-380. doi: 10.1002/hep.29086
    [9]
    中华人民共和国国家卫生健康委员会. 原发性肝癌诊疗指南 (2024 年版)[J]. 肿瘤防治研究, 2024, 51(6): 495-526. [National Health Commission of the People’s Republic of China. Standardization for Diagnosis and Treatment of Primary Hepatic Carcinoma(2024 Edition)[J]. Zhong Liu Fang Zhi Yan Jiu, 2024, 51(6): 495-526.] doi: 10.3971/j.issn.1000-8578.2024.06.0001

    National Health Commission of the People’s Republic of China. Standardization for Diagnosis and Treatment of Primary Hepatic Carcinoma(2024 Edition)[J]. Zhong Liu Fang Zhi Yan Jiu, 2024, 51(6): 495-526. doi: 10.3971/j.issn.1000-8578.2024.06.0001
    [10]
    Yang W, Yan K, Wu GX, et al. Radiofrequency ablation of hepatocellular carcinoma in difficult locations: Strategies and long-term outcomes[J]. World J Gastroenterol, 2015, 21(5): 1554-1566. doi: 10.3748/wjg.v21.i5.1554
    [11]
    Makovich Z, Logemann J, Chen L, et al. Liver tumor ablation in difficult locations: microwave ablation of perivascular and subdiaphragmatic hepatocellular carcinoma[J]. Clin Imaging, 2021, 71: 170-177. doi: 10.1016/j.clinimag.2020.11.010
    [12]
    Waldherr C, Berclaz G, Altermatt HJ, et al. Tomosynthesis-guided vacuum-assisted breast biopsy: A feasibility study[J]. Eur Radiol, 2016, 26(6): 1582-1589. doi: 10.1007/s00330-015-4009-4
    [13]
    Pregler B, Beyer LP, Wiesinger I, et al. Microwave ablation of large HCC lesions: Added value of CEUS examinations for ablation success control[J]. Clin Hemorheol Microcirc, 2017, 64(3): 483-490. doi: 10.3233/CH-168113
    [14]
    Eisenbrey JR, Gabriel H, Savsani E, et al. Contrast-enhanced ultrasound (CEUS) in HCC diagnosis and assessment of tumor response to locoregional therapies[J]. Abdom Radiol (NY), 2021, 46(8): 3579-3595. doi: 10.1007/s00261-021-03059-y
    [15]
    Meloni MF, Francica G, Chiang J, et al. Use of Contrast‐Enhanced Ultrasound in Ablation Therapy of HCC: Planning, Guiding, and Assessing Treatment Response[J]. J Ultrasound Med, 2021, 40(5): 879-894. doi: 10.1002/jum.15471
    [16]
    Lyons GR, Pua BB. Ablation planning software for optimizing treatment: challenges, techniques, and applications[J]. Tech Vasc Interv Radiol, 2019, 22(1): 21-25. doi: 10.1053/j.tvir.2018.10.005
    [17]
    An C, Li X, Zhang M, et al. 3D visualization ablation planning system assisted microwave ablation for hepatocellular carcinoma (Diameter> 3): a precise clinical application[J]. BMC Cancer, 2020, 20(1): 44. doi: 10.1186/s12885-020-6519-y
    [18]
    You Y, Zhang M, Li K, et al. Feasibility of 3D US/CEUS-US/CEUS fusion imaging-based ablation planning in liver tumors: a retrospective study[J]. Abdom Radiol (NY), 2021, 46(6): 2865-2874. doi: 10.1007/s00261-020-02909-5
    [19]
    Li C, Zhu A. Application of image fusion in diagnosis and treatment of liver cancer[J]. Appl Sci, 2020, 10(3): 1171. doi: 10.3390/app10031171
    [20]
    Zhou Y, Wang Y, Wang F, et al. Additional diagnostic value of fusion imaging of CEUS and first CEUS of invisible hepatic lesions≤ 2 cm[J]. J Ultrasound Med, 2021, 40(6): 1173-1181. doi: 10.1002/jum.15498
    [21]
    Carriero S, Della Pepa G, Monfardini L, et al. Role of fusion imaging in image-guided thermal ablations[J]. Diagnostics (Basel), 2021, 11(3): 549. doi: 10.3390/diagnostics11030549
    [22]
    Minami Y, Kudo M. Ultrasound fusion imaging technologies for guidance in ablation therapy for liver cancer[J]. J Med Ultrason (2001), 2020, 47(2): 257-263.
    [23]
    Zhou H, Yang G, Jing X, et al. Predictive value of ablative margin assessment after microwave ablation for local tumor progression in medium and large hepatocellular carcinoma: computed tomography–computed tomography image fusion method versus side-by-side method[J]. J Comput Assist Tomogr, 2023, 47(1): 31-37. doi: 10.1097/RCT.0000000000001395
    [24]
    Xu E, Li K, Long Y, et al. Intra-procedural CT/MR-ultrasound fusion imaging helps to improve outcomes of thermal ablation for hepatocellular carcinoma: results in 502 nodules[J]. Ultraschall Med, 2021, 42(2): e9-e19. doi: 10.1055/a-1021-1616
    [25]
    Wang F, Zhang Q, Yan K, et al. 3D-CEUS/MRI–CEUS fusion imaging vs 2D-CEUS after locoregional therapies for hepatocellular carcinoma: a multicenter prospective study of therapeutic response evaluation[J]. Eur Radiol, 2025, 35(1): 453-462.
    [26]
    Ding J, Wang D, Zhou Y, et al. A novel mono-modality fusion imaging method based on three-dimensional contrast-enhanced ultrasound for the evaluation of ablation margins after microwave ablation of hepatocellular carcinoma[J]. J Gastrointest Oncol, 2021, 12(1): 184-195. doi: 10.21037/jgo-21-46
    [27]
    Long H, Zhou X, Zhang X, et al. 3D fusion is superior to 2D point-to-point contrast-enhanced US to evaluate the ablative margin after RFA for hepatocellular carcinoma[J]. Eur Radiol, 2024, 34(2): 1247-1257.
    [28]
    Chang Y, Jeong SW, Young Jang J, et al. Recent updates of transarterial chemoembolilzation in hepatocellular carcinoma[J]. Int J Mol Sci, 2020, 21(21): 8165. doi: 10.3390/ijms21218165
    [29]
    Zhang K, Mu L, Ren Y, et al. Comparing Long-Term survival benefits of hepatocellular carcinoma between thermal ablation monotherapy and combined therapy with transarterial Chemoembolization: A propensity score matched study[J]. Eur J Radiol, 2023, 167: 111092. doi: 10.1016/j.ejrad.2023.111092
    [30]
    Kim JH, Lee JY, Yu SJ, et al. Fusion imaging-guided radiofrequency ablation with artificial ascites or pleural effusion in patients with hepatocellular carcinomas: the feasibility rate and mid-term outcome[J]. Int J Hyperthermia, 2023, 40(1): 2213424. doi: 10.1080/02656736.2023.2213424
    [31]
    Guo J, Liang S, Liu H, et al. Ultrasound-MR fusion imaging combined with intraductal cooling via PTCD during microwave ablation of perihilar liver tumors: a retrospective pilot study[J]. Int J Hyperthermia, 2024, 41(1): 2361708.
    [32]
    Kudo M. Adjuvant atezolizumab-bevacizumab after resection or ablation for hepatocellular carcinoma[J]. Liver Cancer, 2023, 12(3): 189-197. doi: 10.1159/000531225
    [33]
    Bruix J, Sherman M, American Association for the Study of Liver Diseases. Management of Hepatocellular Carcinoma: An Update[J]. Hepatology, 2011, 53(3): 1020-1022. doi: 10.1002/hep.24199
    [34]
    Forner A, Reig M, Bruix J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314. doi: 10.1016/S0140-6736(18)30010-2
    [35]
    Takayama T, Hasegawa K, Izumi N, et al. Surgery versus radiofrequency ablation for small hepatocellular carcinoma: a randomized controlled trial (SURF trial)[J]. Liver Cancer, 2021, 11(3): 209-218.
    [36]
    Xia Y, Li J, Liu G, et al. Long-term Effects of Repeat Hepatectomy vs Percutaneous Radiofrequency Ablation Among Patients With Recurrent Hepatocellular Carcinoma: A Randomized Clinical Trial[J]. JAMA Oncol, 2020, 6(2): 255-263. doi: 10.1001/jamaoncol.2019.4477
    [37]
    Kariyama K, Nouso K, Hiraoka A, et al. Treatment options for solitary hepatocellular carcinoma≤ 5 cm: surgery vs ablation: a multicenter retrospective study[J]. J Liver Cancer, 2024, 24(1): 71-80. doi: 10.17998/jlc.2023.09.11
    [38]
    Ding J, Jing X, Liu J, et al. Comparison of two different thermal techniques for the treatment of hepatocellular carcinoma[J]. Eur J Radiol, 2013, 82(9): 1379-1384. doi: 10.1016/j.ejrad.2013.04.025
    [39]
    Yu J, Yu XL, Han ZY, et al. Percutaneous cooled-probe microwave versus radiofrequency ablation in early-stage hepatocellular carcinoma: a phase Ⅲ randomised controlled trial[J]. Gut, 2017, 66(6): 1172-1173. doi: 10.1136/gutjnl-2016-312629
    [40]
    Facciorusso A, Abd El Aziz MA, Tartaglia N, et al. Microwave ablation versus radiofrequency ablation for treatment of hepatocellular carcinoma: a meta-analysis of randomized controlled trials[J]. Cancers (Basel), 2020, 12(12): 3796. doi: 10.3390/cancers12123796
    [41]
    Gupta P, Maralakunte M, Kumar-M P, et al. Overall survival and local recurrence following RFA, MWA, and cryoablation of very early and early HCC: a systematic review and Bayesian network meta-analysis[J]. Eur Radiol, 2021, 31(7): 5400-5408. doi: 10.1007/s00330-020-07610-1
    [42]
    Gupta P, Maralakunte M, Sagar S, et al. Efficacy and safety of irreversible electroporation for malignant liver tumors: a systematic review and meta-analysis[J]. Eur Radiol, 2021, 31(9): 6511-6521. doi: 10.1007/s00330-021-07742-y
    [43]
    Meijerink MR, Ruarus AH, Vroomen LGPH, et al. Irreversible electroporation to treat unresectable colorectal liver metastases (COLDFIRE-2): a phase Ⅱ, two-center, single-arm clinical trial[J]. Radiology, 2021, 299(2): 470-480. doi: 10.1148/radiol.2021203089
    [44]
    Jing X, Zhou Y, Ding J, et al. The learning curve for thermal ablation of liver cancers: 4, 363-Session experience for a single central in 18 years[J]. Front Oncol, 2020, 10: 540239. doi: 10.3389/fonc.2020.540239
    [45]
    Dou J, Yu J, Cheng W, et al. Learning curve of microwave ablation for liver cancers[J]. Eur J Radiol, 2023, 158: 110613. doi: 10.1016/j.ejrad.2022.110613
  • Related Articles

    [1]REN Jianwei, ZHOU Zubang, MA Wenjuan, YANG Daxiong, REN Yiqun, ZHANG Zhi, NIU Yanqiang, CAO Lei. Expression of PD-L1 in Primary Colorectal Cancer and Its Predictive Value for Recurrence After Microwave Ablation of Liver Metastases[J]. Cancer Research on Prevention and Treatment, 2023, 50(1): 38-42. DOI: 10.3971/j.issn.1000-8578.2023.22.0538
    [2]YU Jiaojiao, ZHA Li, ZENG Shue. Research Progress on Application of Ultrasonic Microbubbles in Treatment of Liver Cancer[J]. Cancer Research on Prevention and Treatment, 2022, 49(10): 1082-1085. DOI: 10.3971/j.issn.1000-8578.2022.22.0244
    [3]ZHOU Shi. Progress in Locoregional Interventional Therapy of Primary Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(6): 552-556. DOI: 10.3971/j.issn.1000-8578.2022.21.1370
    [4]LU Jingning, YANG Hong, PENG Minhao, XIAO Kaiyin, PENG Tao, PENG Jinbo. Percutaneous Ultrasound-guided Radiofrequency Ablation with Artificial Ascites for Hepatocellular Carcinoma in Hepatic Dome[J]. Cancer Research on Prevention and Treatment, 2015, 42(05): 493-497. DOI: 10.3971/j.issn.1000-8578.2015.05.016
    [5]ZHANG Jiangzhou, LONG Zhixiong. Microwave Ablation Combined with Stereotactic Radiotherapy for Primary and Recurrent Hepatocellular Carcinoma after Interventional Treatment[J]. Cancer Research on Prevention and Treatment, 2014, 41(06): 649-652. DOI: 10.3971/j.issn.1000-8578.2014.06.031
    [6]Shen Xinying, Zhang Yanfang, Kong Jian, Dou Yongchong, Li Yong, Cai Jinzhong, He Fan, Chen Xudong. Therapeutic Value of Radiofrequency Ablation for Treatment of Hepatocellular Carcinoma with Arterioportal Shunts[J]. Cancer Research on Prevention and Treatment, 2012, 39(09): 1120-1124. DOI: 10.3971/j.issn.1000-8578.2012.09.016
    [7]SHEN Quan, XUE Huan-zhou, JIANG Qing-feng, WANG Ya-dong, WANG Qi, WANG Cun-feng. Percutaneous Radiofrequency Ablation for Hepatocellular Carcinoma in Elderly Patients[J]. Cancer Research on Prevention and Treatment, 2009, 36(05): 429-431. DOI: 10.3971/j.issn.1000-8578.2009.05.019
    [8]LI Si-yao, ZHONG Xiao-gui. The Involvement Treatment of Liver Cancer with Dehydrated Alochol Lump Injects under the Supersonic Guidance (48 Cases)[J]. Cancer Research on Prevention and Treatment, 2006, 33(10): 769-771. DOI: 10.3971/j.issn.1000-8578.859
    [9]XIONG Kui, KUANG Jian-rong, LI Chao, WANG Dao-mei, MA Yu-fang. Application of 3 Dimension Conformal Technology in Treatment of Primary Carcinoma of Liver with Radiofrequency Ablation[J]. Cancer Research on Prevention and Treatment, 2005, 32(08): 513-514. DOI: 10.3971/j.issn.1000-8578.2481
    [10]WANG Jian-cheng, HU Dao-yu, HONG Yong-ying, CHEN Dai-ming, LIU Wei, CHEN Jian-zhong. Clinical Value of Anatomical Variation of Hepatic Artery in Interventional Therapy for HCC[J]. Cancer Research on Prevention and Treatment, 2005, 32(08): 509-511. DOI: 10.3971/j.issn.1000-8578.1282
  • Cited by

    Periodical cited type(13)

    1. 黄骞,徐菊娣,杨志勇,倪国英,黄燕,梁洪享,黄英. 安罗替尼+卡瑞利珠单抗联合放疗治疗晚期非小细胞肺癌的疗效. 中国临床研究. 2025(03): 371-374 .
    2. 李治岐,万里新,刘越. 卡瑞利珠单抗联合安罗替尼三线治疗晚期非小细胞肺癌的疗效观察. 临床研究. 2024(01): 50-53 .
    3. 范敏. 卡瑞利珠单抗治疗晚期非小细胞肺癌的临床效果. 北方药学. 2024(03): 134-136 .
    4. 李笑萍,王江涛,花小梅. 安罗替尼联合免疫检查点抑制剂二线及以上治疗驱动基因阴性晚期非小细胞肺癌的疗效和安全性. 癌症进展. 2024(06): 644-647 .
    5. 胡少博. 卡瑞利珠单抗联合化疗治疗晚期非小细胞肺癌及对肿瘤标志物的影响观察. 临床研究. 2024(06): 89-92 .
    6. 赖天,刘铠雄,姜俊,李鹏. 卡瑞利珠单抗联合安罗替尼对晚期食管癌患者疗效及淋巴细胞亚群的影响. 山西医药杂志. 2024(08): 590-593 .
    7. 隋鑫,李林. 卡瑞利珠单抗联合化疗在局部晚期食管鳞癌术前新辅助治疗中的应用研究. 淮海医药. 2024(04): 399-403 .
    8. 张晶,时欣,李阳,何学军. 卡瑞利珠单抗静脉注射联合安罗替尼口服对标准化疗失败的小细胞肺癌治疗观察. 山东医药. 2024(23): 61-63 .
    9. 邱茹,黄佳帏,钟顺波. 卡瑞利珠单抗结合安罗替尼治疗对晚期非小细胞肺癌患者血清肿瘤标志物水平、免疫功能的影响. 现代诊断与治疗. 2024(09): 1318-1320 .
    10. 单风晓,武阳,陆翰杰. 卡瑞利珠单抗联合化疗治疗肺癌的效果研究. 中国实用医刊. 2024(16): 93-96 .
    11. 李鹏,唐海梅,周爱华. 评价卡瑞利珠单抗联合安罗替尼三线治疗晚期非小细胞肺癌的效果. 系统医学. 2024(15): 169-172 .
    12. 石颜慧,王君伟,左一凡,武素芳,闫江涛,高立伟. 安罗替尼联合GP方案治疗晚期非小细胞肺癌的疗效分析. 锦州医科大学学报. 2024(06): 85-89 .
    13. 嵇绍干,赵利红,武斌. 卡瑞利珠单抗联合安罗替尼在晚期食管鳞癌患者一线治疗中的疗效分析. 中外医疗. 2023(26): 98-101 .

    Other cited types(0)

Catalog

    Article views (525) PDF downloads (177) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return