Advanced Search
ZENG Xiaoxian, ZHANG Hong. Visualization Analysis of Research Hotspots and Trends in Treatment of Radioactive Iodine Refractory Differentiated Thyroid Carcinoma[J]. Cancer Research on Prevention and Treatment, 2025, 52(2): 156-164. DOI: 10.3971/j.issn.1000-8578.2025.24.0826
Citation: ZENG Xiaoxian, ZHANG Hong. Visualization Analysis of Research Hotspots and Trends in Treatment of Radioactive Iodine Refractory Differentiated Thyroid Carcinoma[J]. Cancer Research on Prevention and Treatment, 2025, 52(2): 156-164. DOI: 10.3971/j.issn.1000-8578.2025.24.0826

Visualization Analysis of Research Hotspots and Trends in Treatment of Radioactive Iodine Refractory Differentiated Thyroid Carcinoma

More Information
  • Corresponding author:

    ZHANG Hong, E-mail: zhanghn@mail.sysu.edu.cn

  • Received Date: August 26, 2024
  • Revised Date: December 04, 2024
  • Accepted Date: December 06, 2024
  • Available Online: December 26, 2024
  • Objective 

    To explore research hotspots and future development trends in radioactive iodine refractory differentiated thyroid carcinoma (RAIR-DTC) treatment from 2004 to 2024.

    Methods 

    Literature on RAIR-DTC treatment published from January 2004 to May 2024 was retrieved from the Web of Science (WOS) database. CiteSpace, VOSviewer, and Microsoft Office Excel were used for visual analysis of publication volume, countries, institutions, authors, keywords, and co-citation networks.

    Results 

    A total of 677 articles were included in the analysis. National and institutional co-occurrence analysis revealed that the United States, along with the MD Anderson Cancer Center at the University of Texas, was the most productive and influential in this field. Author and citation co-occurrence analysis highlighted the substantial contributions of Schlumberger M and Brose MS to the field. The exploration of high-frequency keywords and keyword clustering indicated tyrosine kinase inhibitors and disease prognostic factors were current research hotspots. Keyword burst analysis suggested that future research trends would focus on optimizing clinical benefits through reliable data provided from high-quality clinical trials and achieving personalized, precise treatment management.

    Conclusion 

    Targeted drugs hold remarkable potential for RAIR-DTC treatment, and emphasizing predictive factors for disease prognosis offers valuable guidance for medical practice.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Van Nostrand D. Radioiodine refractory differentiated thyroid cancer: time to update the classifications[J]. Thyroid, 2018, 28(9): 1083-1093. doi: 10.1089/thy.2018.0048
    [2]
    Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy[J]. Clin Endocr Metab, 2006, 91(8): 2892-2899. doi: 10.1210/jc.2005-2838
    [3]
    Hicks D, Wouters P, Waltman L, et al. Bibliometrics: The Leiden Manifesto for research metrics[J]. Nature, 2015, 520(7548): 429-431. doi: 10.1038/520429a
    [4]
    Ma C, Su H, Li H. Global research trends on prostate diseases and erectile dysfunction: a bibliometric and visualized study[J]. Front Oncol, 2021, 10: 627891. doi: 10.3389/fonc.2020.627891
    [5]
    Kiyota N, Tahara M, Robinson B, et al. Impact of baseline tumor burden on overall survival in patients with radioiodine-refractory differentiated thyroid cancer treated with lenvatinib in the select global phase 3 trial[J]. Cancer, 2022, 128(12): 2281-2287. doi: 10.1002/cncr.34181
    [6]
    Cabanillas ME, Schlumberger M, Jarzab B, et al. A phase Ⅱ trial of lenvatinib (e7080) in advanced, progressive, radioiodine-refractory, differentiated thyroid cancer: a clinical outcomes and biomarker assessment[J]. Cancer, 2015, 121(16): 2749-2756. doi: 10.1002/cncr.29395
    [7]
    Deandreis D, Maillard A, Zerdoud S, et al. RADTHYR: an open-label, single-arm, prospective multicenter phase Ⅱ trial of radium-223 for the treatment of bone metastases from radioactive iodine refractory differentiated thyroid cancer[J]. Eur J Nucl Med Mol Imaging, 2021, 48(10): 3238-3249. doi: 10.1007/s00259-021-05229-y
    [8]
    Taylor MH, Leboulleux S, Panaseykin Y, et al. Health-related quality-of-life analyses from a multicenter, randomized, double-blind phase Ⅱ study of patients with differentiated thyroid cancer treated with lenvatinib 18 or 24 mg/day[J]. Cancer Medicine, 2023, 12(4): 4332-4342. doi: 10.1002/cam4.5308
    [9]
    Capdevila J, Krajewska J, Hernando J, et al. Increased progression-free survival with cabozantinib versus placebo in patients with radioiodine-refractory differentiated thyroid cancer irrespective of prior vascular endothelial growth factor receptor-targeted therapy and tumor histology: a subgroup analysis of the COSMIC-311 study[J]. Thyroid, 2024, 34(3): 347-359. doi: 10.1089/thy.2023.0463
    [10]
    Ly NS, Li J, Faggioni R, et al. Population pharmacokinetics and exposure–response analysis for the phase 3 cosmic-311 trial of cabozantinib for radioiodine-refractory differentiated thyroid cancer[J]. Clin Pharmacokinet, 2023, 62(4): 587-598. doi: 10.1007/s40262-023-01210-0
    [11]
    Brose MS, Cabanillas ME, Cohen EE, et al. Vemurafenib in patients with brafv600e-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial[J]. Lancet Oncol, 2016, 17(9): 1272-1282. doi: 10.1016/S1470-2045(16)30166-8
    [12]
    Schlumberger M, Tahara M, Wirth LJ, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer[J]. N Engl J Med, 2015, 372(7): 621-630. doi: 10.1056/NEJMoa1406470
    [13]
    Brose MS, Nutting CM, Jarzab B, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial[J]. Lancet, 2014, 384(9940): 319-328. doi: 10.1016/S0140-6736(14)60421-9
    [14]
    郑捷, 杨兴耀, 李想. 基于CiteSpace的推荐系统研究可视化分析[J]. 科学技术与工程, 2021, 21(34): 14634-14643. [Zheng J, Yang XY, Li X. Visualization Analysis of Recommendation System Based on CiteSpace[J]. Ke Xue Ji Shu Yu Gong Cheng, 2021, 21(34): 14634-14643.] doi: 10.3969/j.issn.1671-1815.2021.34.024

    Zheng J, Yang XY, Li X. Visualization Analysis of Recommendation System Based on CiteSpace[J]. Ke Xue Ji Shu Yu Gong Cheng, 2021, 21(34): 14634-14643. doi: 10.3969/j.issn.1671-1815.2021.34.024
    [15]
    陈悦. 引文空间分析原理与应用: CiteSpace实用指南[M]. 北京: 科学出版社, 2014. [Chen Y. Principles and Applications of Citation Space Analysis: A Practical Guide to CiteSpace [M]. Beijing: Science Press, 2014.]

    Chen Y. Principles and Applications of Citation Space Analysis: A Practical Guide to CiteSpace [M]. Beijing: Science Press, 2014.
    [16]
    张亚奇, 朱锡群, 樊倩妤, 等. 碘难治性分化型甲状腺癌诱导再分化治疗研究进展[J]. 肿瘤防治研究, 2022, 49(10): 1086-1092. [Zhang YQ, Zhu XQ, Fan QY, et al. Progress in Re-differentiating Therapy of Radioiodine-refractory Differentiated Thyroid Cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(10): 1086-1092.] doi: 10.3971/j.issn.1000-8578.2022.22.0011

    Zhang YQ, Zhu XQ, Fan QY, et al. Progress in Re-differentiating Therapy of Radioiodine-refractory Differentiated Thyroid Cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(10): 1086-1092. doi: 10.3971/j.issn.1000-8578.2022.22.0011
    [17]
    Fugazzola L, Elisei R, Fuhrer D, et al. 2019 european thyroid association guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer[J]. Eur Thyroid J, 2019, 8(5): 227-245. doi: 10.1159/000502229
    [18]
    Cheng L, Fu H, Jin Y, et al. Clinicopathological features predict outcomes in patients with radioiodine-refractory differentiated thyroid cancer treated with sorafenib: a real-world study[J]. Oncologist, 2020, 25(4): e668-e678.
    [19]
    Schneider TC, Abdulrahman RM, Corssmit EP, et al. Long-term analysis of the efficacy and tolerability of sorafenib in advanced radio-iodine refractory differentiated thyroid carcinoma: final results of a phase ii trial[J]. Eur J Endocrinol, 2012, 167(5): 643-650. doi: 10.1530/EJE-12-0405
    [20]
    Ferrara N, Gerber HP, Lecouter J. The biology of vegf and its receptors[J]. Nat Med, 2003, 9(6): 669-676. doi: 10.1038/nm0603-669
    [21]
    Olsson AK, Dimberg A, Kreuger J, et al. VEGF receptor signalling-in control of vascular function[J]. Nat Rev Mol Cell Biol, 2006, 7(5): 359-371. doi: 10.1038/nrm1911
    [22]
    Ling Y, Xiong X, Luo J, et al. The efficacy and safety in radioactive iodine refractory thyroid cancer patients treated with sorafenib[J]. Front Endocrinol, 2023, 14: 1200932. doi: 10.3389/fendo.2023.1200932
    [23]
    Zheng X, Xu Z, Ji Q, et al. A randomized, phase iii study of lenvatinib in chinese patients with radioiodine-refractory differentiated thyroid cancer[J]. Clin Cancer Res, 2021, 27(20): 5502-5509. doi: 10.1158/1078-0432.CCR-21-0761
    [24]
    Damásio IL, Figueiredo A, Maciel J, et al. Effectiveness and safety of lenvatinib in a series of advanced well-differentiated thyroid carcinomas from a single tertiary cancer center and literature review[J]. Minerva Endocrinol (Torino), 2024. Online Agead of Print.
    [25]
    Worden F, Rajkovic-Hooley O, Reynolds N, et al. Real-world treatment patterns and clinical outcomes in patients with radioiodine-refractory differentiated thyroid cancer (rai-r dtc) treated with first line lenvatinib monotherapy in the united states[J]. Endocrine, 2023, 84(2): 663-669. doi: 10.1007/s12020-023-03638-7
    [26]
    Yu J, Liu Z, Su Y, et al. Tyrosine kinase inhibitors for radioiodine refractory differentiated thyroid cancer: a systematic review and meta-analysis[J]. Clin Endocrinol(Oxf), 2024, 100(4): 379-388. doi: 10.1111/cen.15027
    [27]
    Revilla G, Al Qtaish N, Caruana P, et al. Lenvatinib-loaded poly(lactic-co-glycolic acid) nanoparticles with epidermal growth factor receptor antibody conjugation as a preclinical approach to therapeutically improve thyroid cancer with aggressive behavior[J]. Biomolecules, 2023, 13(11): 1647. doi: 10.3390/biom13111647
    [28]
    Mikoshiba T, Sekimizu M, Kono T, et al. Utility and optimal management of planned drug holidays during lenvatinib treatment in patients with unresectable differentiated thyroid cancer: a real-world multi-center study[J]. Endocrine, 2024, 85(2): 777-785. doi: 10.1007/s12020-024-03744-0
    [29]
    Tahara M, Takami H, Ito Y, et al. A prospective cohort study exploring the effect of lenvatinib planned drug holidays in treatment of differentiated thyroid cancer[J]. Thyroid, 2024, 34(5): 566-574. doi: 10.1089/thy.2023.0553
    [30]
    Shen H, Zhu R, Liu Y, et al. Radioiodine-refractory differentiated thyroid cancer: molecular mechanisms and therapeutic strategies for radioiodine resistance[J]. Drug Resist Updat, 2024, 72: 101013. doi: 10.1016/j.drup.2023.101013
    [31]
    中国临床肿瘤学会核医学专家委员会, 中国临床肿瘤学会甲状腺癌专家委员会, 中华医学会核医学分会, 等. 放射性碘难治性分化型甲状腺癌诊治管理指南(2024版)[J]. 中华核医学与分子影像杂志, 2024, 44(6): 359-372. [Chinese Society of Clinical Oncology Nuclear Medicine Expert Committee, Thyroid Cancer Expert Committee of the Chinese Society of Clinical Oncology, Chinese Society of Nuclear Medicine, et al. Management guidelines for radioactive iodine-refractory differentiated thyroid cancer (2024 edition)[J]. Zhonghua He Yi Xue Yu Fen Zi Ying Xiang Za Zhi, 2024, 44(6): 359-372.] doi: 10.3760/cma.j.cn321828-20240125-00034

    Chinese Society of Clinical Oncology Nuclear Medicine Expert Committee, Thyroid Cancer Expert Committee of the Chinese Society of Clinical Oncology, Chinese Society of Nuclear Medicine, et al. Management guidelines for radioactive iodine-refractory differentiated thyroid cancer (2024 edition)[J]. Zhonghua He Yi Xue Yu Fen Zi Ying Xiang Za Zhi, 2024, 44(6): 359-372. doi: 10.3760/cma.j.cn321828-20240125-00034
    [32]
    Tian S, Quan H, Xie C, et al. YN968D1 is a novel and selective inhibitor of vascular endothelial growth factor receptor-2 tyrosine kinase with potent activity in vitro and in vivo[J]. Cancer Sci, 2011, 102(7): 1374-1380. doi: 10.1111/j.1349-7006.2011.01939.x
    [33]
    Lin Y, Qin S, Li Z, et al. Apatinib vs placebo in patients with locally advanced or metastatic, radioactive iodine–refractory differentiated thyroid cancer: the reality randomized clinical trial[J]. JAMA Oncol, 2022, 8(2): 242-250. doi: 10.1001/jamaoncol.2021.6268
    [34]
    Lee YA, Lee H, Im SW, et al. NTRK and ret fusion–directed therapy in pediatric thyroid cancer yields a tumor response and radioiodine uptake[J]. J Clin Invest, 2021, 131(18): e144847. doi: 10.1172/JCI144847
    [35]
    Elisei R, Grande E, Kreissl MC, et al. Current perspectives on the management of patients with advanced RET-driven thyroid cancer in Europe[J]. Front Oncol, 2023, 13: 1141314. doi: 10.3389/fonc.2023.1141314
    [36]
    Haddad R, Elisei R, Hoff AO, et al. Diagnosis and Management of Tropomyosin Receptor Kinase Fusion-Positive Thyroid Carcinomas: A Review[J]. JAMA Oncol, 2023, 9(8): 1132-1141. doi: 10.1001/jamaoncol.2023.1379
    [37]
    Sun D, Zhang X, Sun Y, et al. Early structural, biochemical, and metabolic responses to anlotinib in patients with progressive radioactive iodine refractory differentiated thyroid cancer[J]. Endocr Pract, 2024, 30(5): 456-464. doi: 10.1016/j.eprac.2024.02.005
    [38]
    Dunn LA, Sherman EJ, Baxi SS, et al. Vemurafenib Redifferentiation of BRAF Mutant, RAI-Refractory Thyroid Cancers[J]. J Clin Endocrinol Metab, 2019, 104(5): 1417-1428. doi: 10.1210/jc.2018-01478
    [39]
    Sousa Santos F, Joana Santos R, Leite V. Sorafenib and sunitinib for the treatment of metastatic thyroid cancer of follicular origin: a 7-year single-centre experience[J]. Eur Thyroid J, 2019, 8(5): 262-267. doi: 10.1159/000501680
    [40]
    Chen J, Ji Q, Bai C, et al. Surufatinib in chinese patients with locally advanced or metastatic differentiated thyroid cancer and medullary thyroid cancer: a multicenter, open-label, phase Ⅱ trial[J]. Thyroid, 2020, 30(9): 1245-1253. doi: 10.1089/thy.2019.0453
    [41]
    Nervo A, Retta F, Ragni A, et al. Management of progressive radioiodine-refractory thyroid carcinoma: current perspective[J]. Cancer Manag Res, 2022, 14: 3047-3062. doi: 10.2147/CMAR.S340967
    [42]
    Kim CA, Kim M, Jin M, et al. Prognostic roles of inflammatory biomarkers in radioiodine-refractory thyroid cancer treated with lenvatinib[J]. Endocrinol Metab(Seoul), 2024, 39(2): 334-343. doi: 10.3803/EnM.2023.1854
    [43]
    Sgrò D, Rossi P, Piaggi P, et al. Significance of Thyroglobulin Autoantibodies in Patients With Thyroid Cancer Treated With Lenvatinib[J]. J Endocr Soc, 2023, 7(8): bvad084. doi: 10.1210/jendso/bvad084
    [44]
    Marotta V, Rocco D, Crocco A, et al. Survival predictors of radioiodine-refractory differentiated thyroid cancer treated with lenvatinib in real life[J]. J Clin Endocrinol Metab, 2024, 109(10): 2541-2552. doi: 10.1210/clinem/dgae181
    [45]
    Majid O, Hayato S, Sreerama Reddy SH, et al. Population pharmacokinetic-pharmacodynamic modeling of serum biomarkers as predictors of tumor dynamics following lenvatinib treatment in patients with radioiodine-refractory differentiated thyroid cancer (rr-dtc)[J]. CPT Pharmacometrics Syst Pharmacol, 2024, 13(6): 954-969. doi: 10.1002/psp4.13130
    [46]
    Takeuchi S, Hirata K, Magota K, et al. Early prediction of treatment outcome for lenvatinib using 18f-fdg pet/ct in patients with unresectable or advanced thyroid carcinoma refractory to radioiodine treatment: a prospective, multicentre, non-randomised study[J]. EJNMMI Res, 2023, 13(1): 69. doi: 10.1186/s13550-023-01019-9
    [47]
    Gianoukakis AG, Choe JH, Bowles DW, et al. Real-world practice patterns and outcomes for rai-refractory differentiated thyroid cancer[J]. Eur Thyroid J, 2024, 13(1): e230039.
    [48]
    Leboulleux S, Do Cao C, Zerdoud S, et al. A Phase Ⅱ Redifferentiation Trial with Dabrafenib-Trametinib and 131I in Metastatic Radioactive Iodine Refractory BRAF p. V600E-Mutated Differentiated Thyroid Cancer[J]. Clin Cancer Res, 2023, 29(13): 2401-2409. doi: 10.1158/1078-0432.CCR-23-0046
    [49]
    Matsuyama C, Enokida T, Ueda Y, et al. Planned drug holidays during treatment with lenvatinib for radioiodine-refractory differentiated thyroid cancer: a retrospective study[J]. Front Oncol, 2023, 13: 1139659. doi: 10.3389/fonc.2023.1139659
    [50]
    Tateai Y, Kawakami K, Teramae M, et al. Factors associated with lenvatinib adherence in thyroid cancer and hepatocellular carcinoma[J]. PLoS One, 2023, 18(11): e0294320. doi: 10.1371/journal.pone.0294320
    [51]
    Mu Z, Zhang X, Sun D, et al. Characterizing Genetic Alterations Related to Radioiodine Avidity in Metastatic Thyroid Cancer[J]. Clin Endocr Metab, 2024, 109(5): 1231-1240. doi: 10.1210/clinem/dgad697
    [52]
    Odogwu L, Mathieu L, Blumenthal G, et al. FDA approval summary: dabrafenib and trametinib for the treatment of metastatic non-small cell lung cancers harboring braf v600e mutations[J]. Oncologist, 2018, 23(6): 740-745. doi: 10.1634/theoncologist.2017-0642
    [53]
    Nagarajah J, Le M, Knauf JA, et al. Sustained erk inhibition maximizes responses of brafv600e thyroid cancers to radioiodine[J]. J Clin Invest, 2016, 126(11): 4119-4124. doi: 10.1172/JCI89067
    [54]
    Busaidy NL, Konda B, Wei L, et al. Dabrafenib versus dabrafenib + trametinib in braf -mutated radioactive iodine refractory differentiated thyroid cancer: results of a randomized, phase 2, open-label multicenter trial[J]. Thyroid, 2022, 32(10): 1184-1192.
    [55]
    Ho AL, Dedecjus M, Wirth LJ, et al. Selumetinib plus adjuvant radioactive iodine in patients with high-risk differentiated thyroid cancer: A phase Ⅲ, randomized, placebo-controlled trial (Astra)[J]. J Clin Oncol, 2022, 40(17): 1870-1878. doi: 10.1200/JCO.21.00714
    [56]
    Borson-Chazot F, Dantony E, Illouz F, et al. Effect of buparlisib, a pan-class i pi3k inhibitor, in refractory follicular and poorly differentiated thyroid cancer[J]. Thyroid, 2018, 28(9): 1174-1179. doi: 10.1089/thy.2017.0663
    [57]
    Hanna GJ, Busaidy NL, Chau NG, et al. Genomic correlates of response to everolimus in aggressive radioiodine-refractory thyroid cancer: A phase Ⅱ study[J]. Clin Cancer Res, 2018, 24(7): 1546-1553. doi: 10.1158/1078-0432.CCR-17-2297
    [58]
    Nikitski AV, Condello V, Divakaran SS, et al. Inhibition of alk-signaling overcomes strn-alk-induced downregulation of the sodium iodine symporter and restores radioiodine uptake in thyroid cells[J]. Thyroid, 2023, 33(4): 464-473. doi: 10.1089/thy.2022.0533
    [59]
    Van Nostrand D, Veytsman I, Kulkarni K, et al. Redifferentiation of Differentiated Thyroid Cancer: Clinical Insights from a Narrative Review of Literature[J]. Thyroid, 2023, 33(6): 674-681. doi: 10.1089/thy.2022.0632
    [60]
    刘晶, 张俊. 放射性碘难治性分化型甲状腺癌再分化治疗研究进展[J]. 国际肿瘤学杂志, 2024, 51(7): 464-467. [Liu J, Zhang J. Progress in the study of redifferentiation therapy for radioactive iodine-refractory differentiated thyroid carcinoma[J]. Guo Ji Zhong Liu Xue Za Zhi, 2024, 51(7): 464-467.] doi: 10.3760/cma.j.cn371439-20231008-00076

    Liu J, Zhang J. Progress in the study of redifferentiation therapy for radioactive iodine-refractory differentiated thyroid carcinoma[J]. Guo Ji Zhong Liu Xue Za Zhi, 2024, 51(7): 464-467. doi: 10.3760/cma.j.cn371439-20231008-00076

Catalog

    Figures(4)  /  Tables(2)

    Article views (1130) PDF downloads (259) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return