Citation: | JIANG Yale, WANG Yan. Global Landscape of Clinical Trials in Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 313-320. DOI: 10.3971/j.issn.1000-8578.2024.24.0022 |
Lung cancer, the second most prevalent cancer in the world with a persistently high mortality rate, threatens the life and health of all humanity. With the development of clinical trials, the treatment options for lung cancer have been enriched, and the understanding of the timing of intervention has become more explicit than before. Thus, the prognosis of lung cancer has significantly improved. However, unmet clinical needs still exist. This review provides the global trend of clinical research in lung cancer treatment and describes the evolution of clinical trials in terms of design, implementation, and regulation. The change in study endpoints is conducive to shortening the research and development cycle and accelerating the launch of drugs. The refinement of study populations and therapeutic targets facilitates the realization of the maximum efficacy of precision treatment. The integration of comprehensive and diversified therapeutic strategies and the combination of prevention and treatment further promote the improvement of survival and the alleviation of social burden. This review also proposes a prospective direction for future development of clinical research in lung cancer.
Competing interests: The authors declare that they have no competing interests.
[1] |
Zheng RS, Zhang SW, Zeng HM, et al. Cancer incidence and mortality in China, 2016[J]. J Nat Cancer Cent, 2022, 2(1): 1-9. doi: 10.1016/j.jncc.2022.02.002
|
[2] |
Bray F, Laversanne M, Sung H, et al. Global cancer Statistics 2022: GLOBOCAN estimates of incidence and mortality world wide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, Online ahead of print.
|
[3] |
U. S. Department of Health and Human Services, Food and Drug Administration, Oncology Center of Excellence, et al. Clinical trial endpoints for the approval of cancer drugs and biologics: Guidance for industry[S]. 2018.
|
[4] |
Zhang S, Li S, Cui Y, et al. Consideration of surrogate endpoints for overall survival associated with first-line immunotherapy in extensive-stage small cell lung cancer[J]. Front Oncol, 2021, 11: 696010. doi: 10.3389/fonc.2021.696010
|
[5] |
Mauguen A, Pignon JP, Burdett S, et al. Surrogate endpoints for overall survival in chemotherapy and radiotherapy trials in operable and locally advanced lung cancer: A re-analysis of meta-analyses of individual patients' data[J]. Lancet Oncol, 2013, 14(7): 619-626. doi: 10.1016/S1470-2045(13)70158-X
|
[6] |
Blumenthal GM, Karuri SW, Zhang H, et al. Overall response rate, progression-free survival, and overall survival with targeted and standard therapies in advanced non-small-cell lung cancer: Us food and drug administration trial-level and patient-level analyses[J]. J Clin Oncol, 2015, 33(9): 1008-1014. doi: 10.1200/JCO.2014.59.0489
|
[7] |
Shameer K, Zhang Y, Jackson D, et al. Correlation between early endpoints and overall survival in non-small-cell lung cancer: A trial-level meta-analysis[J]. Front Oncol, 2021, 11: 672916. doi: 10.3389/fonc.2021.672916
|
[8] |
Chung HC, Piha-Paul SA, Lopez-Martin J, et al. Pembrolizumab after two or more lines of previous therapy in patients with recurrent or metastatic small-cell lung cancer: Results from the KEYNOTE-028 and KEYNOTE-158 studies[J]. J Thorac Oncol, 2020, 15(4): 618-627. doi: 10.1016/j.jtho.2019.12.109
|
[9] |
Ediebah DE, Coens C, Zikos E, et al. Does change in health-related quality of life score predict survival? Analysis of eortc 08975 lung cancer trial[J]. Br J Cancer, 2014, 110(10): 2427-2433. doi: 10.1038/bjc.2014.208
|
[10] |
Sloan JA, Zhao X, Novotny PJ, et al. Relationship between deficits in overall quality of life and non-small-cell lung cancer survival[J]. J Clin Oncol, 2012, 30(13): 1498-1504. doi: 10.1200/JCO.2010.33.4631
|
[11] |
Pallmann P, Bedding AW, Choodari-Oskooei B, et al. Adaptive designs in clinical trials: Why use them, and how to run and report them[J]. BMC Med, 2018, 16(1): 29. doi: 10.1186/s12916-018-1017-7
|
[12] |
Kim ES, Herbst RS, Wistuba II, et al. The BATTLE trial: personalizing therapy for lung cancer[J]. Cancer Discov, 2011, 1(1): 44-53. doi: 10.1158/2159-8274.CD-10-0010
|
[13] |
Middleton G, Fletcher P, Popat S, et al. The national lung matrix trial of personalized therapy in lung cancer[J]. Nature, 2020, 583(7818): 807-812. doi: 10.1038/s41586-020-2481-8
|
[14] |
Palermos D, Sergentanis TN, Gavriatopoulou M, et al. Lung cancer clinical trials with a seamless phase ii/iii design: Systematic review[J]. J Clin Med, 2022, 11(23): 7176. doi: 10.3390/jcm11237176
|
[15] |
Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, pd-l1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial[J]. Lancet, 2016, 387(10027): 1540-1550. doi: 10.1016/S0140-6736(15)01281-7
|
[16] |
Kazandjian D, Blumenthal GM, Chen HY, et al. FDA approval summary: crizotinib for the treatment of metastatic non-small cell lung cancer with anaplastic lymphoma kinase rearrangements[J]. Oncologist, 2014, 19(10): e5-e11. doi: 10.1634/theoncologist.2014-0241
|
[17] |
Wolf J, Seto T, Han JY, et al. Capmatinib in MET Exon 14-mutated or MET-Amplified non-small-cell lung cancer[J]. N Engl J Med, 2020, 383(10): 944-957. doi: 10.1056/NEJMoa2002787
|
[18] |
Gainor JF, Curigliano G, Kim DW, et al. Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): A multi-cohort, open-label, phase 1/2 study[J]. Lancet Oncol, 2021, 22(7): 959-969. doi: 10.1016/S1470-2045(21)00247-3
|
[19] |
de Langen AJ, Johnson ML, Mazieres J, et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: a randomised, open-label, phase 3 trial[J]. Lancet, 2023, 401(10378): 733-746. doi: 10.1016/S0140-6736(23)00221-0
|
[20] |
Murciano-Goroff YR, Drilon A, Stadler ZK. The NCI-MATCH: a national, collaborative precision oncology trial for diverse tumor histologies[J]. Cancer Cell, 2021, 39(1): 22-24. doi: 10.1016/j.ccell.2020.12.021
|
[21] |
Herbst RS, Gandara DR, Hirsch FR, et al. Lung master protocol (lung-MAP)-a biomarker-driven protocol for accelerating development of therapies for squamous cell lung cancer: SWOG S1400[J]. Clin Cancer Res, 2015, 21(7): 1514-1524. doi: 10.1158/1078-0432.CCR-13-3473
|
[22] |
Center for Drug Evaluation N. Guidance for patient-centric clinical trials[S]. 2023.
|
[23] |
Liu SM, Tu HY, Wei XW, et al. First-line pyrotinib in advanced HER2-mutant non-small-cell lung cancer: A patient-centric phase 2 trial[J]. Nat Med, 2023, 29(8): 2079-2086. doi: 10.1038/s41591-023-02461-x
|
[24] |
Sands J, Mandrekar SJ, Oxnard GR, et al. ALCHEMIST: Adjuvant targeted therapy or immunotherapy for high-risk resected NSCLC[J]. J Clin Oncol, 2020, 38(15_suppl): TPS9077. doi: 10.1200/JCO.2020.38.15_suppl.TPS9077
|
[25] |
Paz-Ares L, Tan EH, O'Byrne K, et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Overall survival data from the phase Ⅱb LUX-lung 7 trial[J]. Ann Oncol, 2017, 28(2): 270-277. doi: 10.1093/annonc/mdw611
|
[26] |
Wu YL, Cheng Y, Zhou X, et al. Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): A randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2017, 18(11): 1454-1466. doi: 10.1016/S1470-2045(17)30608-3
|
[27] |
Shi Y, Chen G, Wang X, et al. Furmonertinib (AST2818) versus gefitinib as first-line therapy for Chinese patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer (FURLONG): A multicentre, double-blind, randomised phase 3 study[J]. Lancet Respir Med, 2022, 10(11): 1019-1028. doi: 10.1016/S2213-2600(22)00168-0
|
[28] |
Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non-small-cell lung cancer[J]. N Engl J Med, 2018, 378(2): 113-125. doi: 10.1056/NEJMoa1713137
|
[29] |
Sequist LV, Han JY, Ahn MJ, et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study[J]. Lancet Oncol, 2020, 21(3): 373-386. doi: 10.1016/S1470-2045(19)30785-5
|
[30] |
Goto Y, Su WC, Levy BP, et al. TROPION-Lung02: Datopotamab deruxtecan (Dato-DXd) plus pembrolizumab (pembro) with or without platinum chemotherapy (Pt-CT) in advanced non-small cell lung cancer (aNSCLC)[J]. J Clin Oncol, 2023, 41(16_suppl): 9004. doi: 10.1200/JCO.2023.41.16_suppl.9004
|
[31] |
Liu C, Zheng S, Jin R, et al. The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype and increased immunogenicity[J]. Cancer Lett, 2020, 470: 95-105. doi: 10.1016/j.canlet.2019.10.027
|
[32] |
Briere DM, Li S, Calinisan A, et al. The KRASG12C Inhibitor MRTX849 Reconditions the Tumor Immune Microenvironment and Sensitizes Tumors to Checkpoint Inhibitor Therapy[J]. Mol Cancer Ther, 2021, 20(6): 975-985. doi: 10.1158/1535-7163.MCT-20-0462
|
[33] |
Jänne PA, Smit EF, de Marinis F, et al. Preliminary safety and efficacy of adagrasib with pembrolizumab in treatment-naïve patients with advanced NSCLC harboring a KRASG12C mutation[R]. ESMO-IO, 2022: LBA4.
|
[34] |
Provencio M, Nadal E, Insa A, et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial[J]. Lancet Oncol, 2020, 21(11): 1413-1422. doi: 10.1016/S1470-2045(20)30453-8
|
[35] |
Felip E, Altorki N, Zhou C, et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage ⅠB-ⅢA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial[J]. Lancet, 2021, 398(10308): 1344-1357. doi: 10.1016/S0140-6736(21)02098-5
|
[36] |
Chen S, Zhang Z, Zheng X, et al. Response efficacy of PD-1 and PD-L1 inhibitors in clinical trials: A systematic review and meta-analysis[J]. Front Oncol, 2021, 11: 562315. doi: 10.3389/fonc.2021.562315
|
[37] |
Chen XJ, Yuan SQ, Duan JL, et al. The Value of PD-L1 Expression in Predicting the Efficacy of Anti-PD-1 or Anti-PD-L1 Therapy in Patients with Cancer: A Systematic Review and Meta-Analysis[J]. Dis Markers, 2020, 2020: 6717912.
|
[38] |
Yi M, Jiao D, Xu H, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors[J]. Mol Cancer, 2018, 17(1): 129. doi: 10.1186/s12943-018-0864-3
|
[39] |
Scilla KA, Rolfo C. The role of circulating tumor DNA in lung cancer: Mutational analysis, diagnosis, and surveillance now and into the future[J]. Curr Treat Options Oncol, 2019, 20(7): 61. doi: 10.1007/s11864-019-0653-2
|
[40] |
Jee J, Lebow ES, Yeh R, et al. Overall survival with circulating tumor DNA-guided therapy in advanced non-small-cell lung cancer[J]. Nat Med, 2022, 28(11): 2353-2363. doi: 10.1038/s41591-022-02047-z
|
[41] |
Dziadziuszko R, Mok T, Peters S, et al. Blood First Assay Screening Trial (BFAST) in Treatment-Naive Advanced or Metastatic NSCLC: Initial Results of the Phase 2 ALK-Positive Cohort[J]. J Thorac Oncol, 2021, 16(12): 2040-2050. doi: 10.1016/j.jtho.2021.07.008
|
[42] |
Anagnostou V, Ho C, Nicholas G, et al. ctDNA response after pembrolizumab in non-small cell lung cancer: phase 2 adaptive trial results[J]. Nat Med, 2023, 29(10): 2559-2569. doi: 10.1038/s41591-023-02598-9
|
[43] |
Pan Y, Zhang JT, Gao X, et al. Dynamic circulating tumor DNA during chemoradiotherapy predicts clinical outcomes for locally advanced non-small cell lung cancer patients[J]. Cancer Cell, 2023, 41(10): 1763-1773. e4.
|
[44] |
Heymach JV, Harpole D, Mitsudomi T, et al. AEGEAN: A phase 3 trial of neoadjuvant durvalumab + chemotherapy followed by adjuvant durvalumab in patients with resectable NSCLC[J]. Cancer Res, 2023, 83(8_Supplement): CT005. doi: 10.1158/1538-7445.AM2023-CT005
|
[45] |
Socinski MA, Nishio M, Jotte RM, et al. IMpower150 Final Overall Survival Analyses for Atezolizumab Plus Bevacizumab and Chemotherapy in First-Line Metastatic Nonsquamous NSCLC[J]. J Thorac Oncol, 2021, 16(11): 1909-1924. doi: 10.1016/j.jtho.2021.07.009
|
[46] |
Cho BC, Reinmuth N, Luft A, et al. Durvalumab (D) +/- tremelimumab (T) + chemotherapy (CT) in first-line (1L) metastatic (M) NSCLC: Ae management in poseidon[J]. J Clin Oncol, 2022, 40(16_suppl): 9035. doi: 10.1200/JCO.2022.40.16_suppl.9035
|
[47] |
Liu L, Gao Q, Jiang J, et al. Randomized, multicenter, open-label trial of autologous cytokine-induced killer cell immunotherapy plus chemotherapy for squamous non-small-cell lung cancer: NCT01631357[J]. Signal Transduct Target Ther, 2020, 5(1): 244. doi: 10.1038/s41392-020-00337-x
|
[48] |
Giaccone G, Bazhenova LA, Nemunaitis J, et al. A phase Ⅲ study of belagenpumatucel-L, an allogeneic tumour cell vaccine, as maintenance therapy for non-small cell lung cancer[J]. Eur J Cancer, 2015, 51(16): 2321-2329. doi: 10.1016/j.ejca.2015.07.035
|
[49] |
García-Pardo M, Gorria T, Malenica I, et al. Vaccine therapy in non-small cell lung cancer[J]. Vaccines (Basel), 2022, 10(5): 740. doi: 10.3390/vaccines10050740
|
[1] | ZHANG Shouyu, CHEN Bojiang, LI Weimin. Applications and Challenges of Artificial Intelligence in Early Diagnosis and Precise Treatment of Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2024, 51(12): 1000-1006. DOI: 10.3971/j.issn.1000-8578.2024.24.0755 |
[2] | DU Xiaoyue, SHEN Bo. Treatment and Research Progress of Advanced Non-Small Cell Lung Cancer with Rare Mutations[J]. Cancer Research on Prevention and Treatment, 2024, 51(9): 727-736. DOI: 10.3971/j.issn.1000-8578.2024.24.0313 |
[3] | YANG Wentao, LI Minghan, CAI Jidong, LI Cong, SONG Wang, XU Ye. Application of Circulating Tumor DNA in Precision Diagnosis and Treatment of Colorectal Cancer[J]. Cancer Research on Prevention and Treatment, 2024, 51(3): 157-162. DOI: 10.3971/j.issn.1000-8578.2024.23.1237 |
[4] | REN Shengxiang, QIU Tianyu. Perspective of Precision Therapy on Lung Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(5): 442-451. DOI: 10.3971/j.issn.1000-8578.2023.22.1208 |
[5] | ZHENG Qingyuan, YANG Rui, WANG Lei, CHEN Zhiyuan, LIU Xiuheng. Research Progress of Deep Learning in Bladder Cancer Pathology[J]. Cancer Research on Prevention and Treatment, 2023, 50(1): 98-102. DOI: 10.3971/j.issn.1000-8578.2023.22.0704 |
[6] | ZHANG Baihong, YUE Hongyun. Research Progress on Clinical Trials of Antitumor Drugs[J]. Cancer Research on Prevention and Treatment, 2022, 49(2): 163-166. DOI: 10.3971/j.issn.1000-8578.2022.21.0873 |
[7] | ZOU Jiayun, YANG Tianyao, WANG Ying. Precision Therapy of Metastatic Colorectal Cancer with RAS Mutation[J]. Cancer Research on Prevention and Treatment, 2021, 48(8): 820-824. DOI: 10.3971/j.issn.1000-8578.2021.21.0230 |
[8] | New Strategy for Tumor Precise Treatment, etc[J]. Cancer Research on Prevention and Treatment, 2019, 46(10): 961-962. DOI: 10.3971/j.issn.1000-8578.2019.10.0001 |
[9] | LI Liping, DENG Ye, LUO Tingjun, LU Feng, LEI Yingman, ZHAO Zhibin, LIANG Wenjie. Precise Position Fixed Mode of Lung Cancer in Image-guided Radiotherapy[J]. Cancer Research on Prevention and Treatment, 2018, 45(10): 758-761. DOI: 10.3971/j.issn.1000-8578.2018.17.1547 |
[10] | ZHANG Lei, HAO Chunyi, LIAO Hongwu, LU Ting, ZHOU Shunlian, LI Jie. Specialty and Related Medical Ethical Issues in Clinical Trials of Anticancer Drugs[J]. Cancer Research on Prevention and Treatment, 2017, 44(7): 506-508. DOI: 10.3971/j.issn.1000-8578.2017.16.1559 |