Advanced Search
CHEN Fengxia, PU Feifei. Folic Acid-Modified Liposome Quercetin Induces Apoptosis of Triple-Negative Breast Cancer Cells via Mitochondrial Apoptosis Mediated by JAK2/STAT3 Signaling Pathway[J]. Cancer Research on Prevention and Treatment, 2024, 51(7): 554-560. DOI: 10.3971/j.issn.1000-8578.2024.23.1390
Citation: CHEN Fengxia, PU Feifei. Folic Acid-Modified Liposome Quercetin Induces Apoptosis of Triple-Negative Breast Cancer Cells via Mitochondrial Apoptosis Mediated by JAK2/STAT3 Signaling Pathway[J]. Cancer Research on Prevention and Treatment, 2024, 51(7): 554-560. DOI: 10.3971/j.issn.1000-8578.2024.23.1390

Folic Acid-Modified Liposome Quercetin Induces Apoptosis of Triple-Negative Breast Cancer Cells via Mitochondrial Apoptosis Mediated by JAK2/STAT3 Signaling Pathway

Funding: National Natural Science Foundation of China (No. 82274559); Fundamental Research Funds for the Central Universities (No. 2042023kf0052)
More Information
  • Corresponding author:

    PU Feifei, E-mail: pufeifei@hust.edu.cn

  • Received Date: January 03, 2024
  • Revised Date: April 28, 2024
  • Available Online: August 11, 2024
  • Objective 

    To investigate the effect of folic acid–modified liposome quercetin (FLQ) on the proliferation and apoptosis of triple negative breast cancer (TNBC) cells and explore its underlying mechanism.

    Methods 

    CCK-8 was used to detect the effect of FLQ on TNBC cell viability. Colony formation assay was conducted to detect the effect of FLQ on TNBC cell proliferation. Flow cytometry was performed to detect the effect of FLQ on TNBC cell apoptosis, the levels of intracellular ROS, and mitochondrial membrane potential. Western blot analysis was conducted to detect the expression levels of JAK2/STAT3 signaling pathway-related and apoptosis-related proteins.

    Results 

    FLQ inhibited the proliferation and promoted the apoptosis of MDA-MB-231 cells (P=0.023, P<0.001). It promoted mitochondrial membrane potential collapse and increased the intracellular ROS levels of MDA-MB-231 cells (P=0.003, P=0.034); inhibited the phosphorylation levels of JAK2 and STAT3; upregulated the expression levels of the proapoptotic proteins Bax, Bak, cytochrome C, and Cleaved-Caspase-3 (P<0.001, P<0.001); and downregulated the expression levels of the antiapoptotic proteins Bcl2 and Bcl-xL (P=0.037, 0.028).

    Conclusion 

    FLQ inhibits the proliferation and induces the apoptosis of MDA-MB-231 cells. These effects may be related to the activation of the mitochondrial apoptosis pathway through the inhibition of the JAK2/STAT3 signaling pathway.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Chen FX, Wang QQ, Yu XY, et al. MCPIP1-mediated NFIC alternative splicing inhibits proliferation of triple-negative breast cancer via cyclin D1-Rb-E2F1 axis[J]. Cell Death Dis, 2021, 12(4): 370. doi: 10.1038/s41419-021-03661-4
    [2]
    Waks AG, Wuner EP. Breast Cancer Treatment: A Review[J]. JAMA, 2019, 321(3): 288-300. doi: 10.1001/jama.2018.19323
    [3]
    Nyrop KA, Damone EM, Deal AM, et al. Patient-reported treatment toxicity and adverse events in Black and White women receiving chemotherapy for early breast cancer[J]. Breast Cancer Res Treat, 2022, 191(2): 409-422. doi: 10.1007/s10549-021-06439-6
    [4]
    Cheng GR, Pi ZF, Zhuang XY, et al. The effects and mechanisms of aloe-emodin on reversing adriamycin-induced resistance of MCF-7/ADR cells[J]. Phytother Res, 2021, 35(7): 3886-3897. doi: 10.1002/ptr.7096
    [5]
    王博, 卢义, 魏莱, 等. 基于网络药理学探讨柴胡对4种分子分型乳腺癌的治疗机制[J]. 世界中医药, 2022, 17(11): 1547-1552. [Wang B, Lu Y, Wei L, et al. Mechanism of bupleuri radix in treatment of four molecular types of breast cancer based on network pharmacology[J]. Shi Jie Zhong Yi Yao, 2022, 17(11): 1547-1552.] doi: 10.3969/j.issn.1673-7202.2022.17.010

    Wang B, Lu Y, Wei L, et al. Mechanism of bupleuri radix in treatment of four molecular types of breast cancer based on network pharmacology[J]. Shi Jie Zhong Yi Yao, 2022, 17(11): 1547-1552. doi: 10.3969/j.issn.1673-7202.2022.17.010
    [6]
    马纳, 李亚静, 范吉平. 槲皮素药理作用研究进展[J]. 辽宁中医药大学学报, 2018, 20(8): 221-224. [Ma N, Li YJ, Fang JP. Research Progress on Pharmacological Action of Quercetin[J]. Liaoning Zhong Yi Yao Da Xue Xue Bao, 2018, 20(8): 221-224.]

    Ma N, Li YJ, Fang JP. Research Progress on Pharmacological Action of Quercetin[J]. Liaoning Zhong Yi Yao Da Xue Xue Bao, 2018, 20(8): 221-224.
    [7]
    徐瑞雪, 王宇. 槲皮素抗肿瘤作用研究进展[J/OL]. 中成药, (2023-05-31). https://kns.cnki.net/kcms2/detail/31.1368.R.20230530.1600.002.html. [Xu RX, Wang Y. Research progress on antitumor effects of quercetin[J/OL]. Zhong Cheng Yao, (2023-05-31). https://kns.cnki.net/kcms2/detail/31.1368.R.20230530.1600.002.html.]

    Xu RX, Wang Y. Research progress on antitumor effects of quercetin[J/OL]. Zhong Cheng Yao, (2023-05-31). https://kns.cnki.net/kcms2/detail/31.1368.R.20230530.1600.002.html.
    [8]
    He CX, Lu XH, Li J, et al. The effect of quercetin on cervical cancer cells as determined by inducing tumor endoplasmic reticulum stress and apoptosis and its mechanism of action[J]. Am J Transl Res, 2021, 13(5): 5240-5247.
    [9]
    吴洪皓, 杨华, 吴鹏. 槲皮素对A549细胞PI3K/Akt信号通路及肿瘤恶性特征的调控机制[J]. 中成药, 2021, 43(12): 3476-3479. [Wu HH, Yang H, Wu P. Regulation mechanism of quercetin on PI3K/Akt signaling pathway and malignant characteristics of A549 cells[J]. Zhong Cheng Yao, 2021, 43(12): 3476-3479.] doi: 10.3969/j.issn.1001-1528.2021.12.042

    Wu HH, Yang H, Wu P. Regulation mechanism of quercetin on PI3K/Akt signaling pathway and malignant characteristics of A549 cells[J]. Zhong Cheng Yao, 2021, 43(12): 3476-3479. doi: 10.3969/j.issn.1001-1528.2021.12.042
    [10]
    高丽枫, 李秀丽, 张雪辉, 等. 槲皮素在肝细胞癌中的作用机制研究进展[J]. 赤峰学院学报(自然科学版), 2021, 37(6): 65-70. [Gao LF, Li XL, Zhang XH, et al. Research progress on the mechanism of quercetin in hepatocellular carcinoma[J]. Chifeng Xue Yuan Xue Bao (Zi Ran Ke Xue Ban), 2021, 37(6): 65-70.]

    Gao LF, Li XL, Zhang XH, et al. Research progress on the mechanism of quercetin in hepatocellular carcinoma[J]. Chifeng Xue Yuan Xue Bao (Zi Ran Ke Xue Ban), 2021, 37(6): 65-70.
    [11]
    Ayele TM, Muche ZT, Teklemariam AB, et al. Role of JAK2/STAT3 Signaling Pathway in the Tumorigenesis, Chemotherapy Resistance, and Treatment of Solid Tumors: A Systemic Review[J]. J Inflamm Res, 2022, 15: 1349-1364. doi: 10.2147/JIR.S353489
    [12]
    Jiang YX, Di YY, Pan YF, et al. Total Flavonoids from Radix Glycyrrhiza Exert Anti-Inflammatory and Antitumorigenic Effects by Inactivating iNOS Signaling Pathways[J]. Evid Based Complement Alternat Med, 2018, 2018: 6714282.
    [13]
    吕琳, 李静. 槲皮素调控JAK2/STAT3对直肠癌细胞生物活性的影响[J]. 中国现代普通外科进展, 2023, 26(1): 7-12. [Lyu L, Li J. Mechanism of quercetin on regulating the biological activity of the JAK2/STAT3 signaling pathway on rectal cancer cells[J]. Zhongguo Xian Dai Pu Tong Wai Ke Jin Zhan, 2023, 26(1): 7-12.]

    Lyu L, Li J. Mechanism of quercetin on regulating the biological activity of the JAK2/STAT3 signaling pathway on rectal cancer cells[J]. Zhongguo Xian Dai Pu Tong Wai Ke Jin Zhan, 2023, 26(1): 7-12.
    [14]
    赵艳, 郑彩霞, 万秋园, 等. 槲皮素与FSCN1基因siRNA联合对卵巢癌生长抑制及免疫功能的影响研究[J]. 临床和实验医学杂志, 2018, 17(18): 1947-1951. [Zhao Y, Zheng CX, Wan QY, et al. Effects of quercetin combined with FSCN1 gene siRNA on growth inhibition and immune function in ovarian cancer[J]. Lin Chuang He Shi Yan Yi Xue Za Zhi, 2018, 17(18): 1947-1951.] doi: 10.3969/j.issn.1671-4695.2018.18.013

    Zhao Y, Zheng CX, Wan QY, et al. Effects of quercetin combined with FSCN1 gene siRNA on growth inhibition and immune function in ovarian cancer[J]. Lin Chuang He Shi Yan Yi Xue Za Zhi, 2018, 17(18): 1947-1951. doi: 10.3969/j.issn.1671-4695.2018.18.013
    [15]
    Jing DD, Wu W, Chen FX, et al. Quercetin encapsulated in folic acid-modified liposomes is therapeutic against osteosarcoma by non-covalent binding to the JH2 domain of JAK2 Via the JAK2-STAT3-PDL1[J]. Pharmacol Res, 2022, 182: 106287. doi: 10.1016/j.phrs.2022.106287
    [16]
    So JY, Ohm J, Lipkowitz S, et al. Triple negative breast cancer (TNBC): Non-genetic tumor heterogeneity and immune microenvironment: Emerging treatment options[J]. Pharmacol Ther, 2022, 237: 108253. doi: 10.1016/j.pharmthera.2022.108253
    [17]
    郑倩, 王晓珊, 林蔓婷, 等. 异乌药内酯通过ROS介导的线粒体凋亡途径诱导A549细胞凋亡的研究[J]. 惠州学院学报, 2023, 43(3): 35-39. [Zheng Q, Wang XS, Lin MT, et al. Isolinderalactone induced A549 cells apoptosis via ROS-mediated mitochondrial apoptotic pathway[J]. Huizhou Xue Yuan Xue Bao, 2023, 43(3): 35-39.]

    Zheng Q, Wang XS, Lin MT, et al. Isolinderalactone induced A549 cells apoptosis via ROS-mediated mitochondrial apoptotic pathway[J]. Huizhou Xue Yuan Xue Bao, 2023, 43(3): 35-39.
    [18]
    Jing DD, Chen XZ, Zhang ZH, et al. 2-Hydroxy-3-methylanthraquinone inhibits homologous recombination repair in osteosarcoma through the MYC-CHK1-RAD51 axis[J]. Mol Med, 2023, 29(1): 15. doi: 10.1186/s10020-023-00611-y
    [19]
    Zhou YY, Zhang JH, Wang KL, et al. Quercetin overcomes colon cancer cells resistance to chemotherapy by inhibiting solute carrier family 1, member 5 transporter[J]. Eur J Pharmacol, 2020, 881: 173185. doi: 10.1016/j.ejphar.2020.173185
    [20]
    李怡, 陈其章, 范临夏, 等. 槲皮素协同影响DNA修复和ROS水平提高NSCLC细胞的放疗敏感性[J]. 中药药理与临床, 2023, 39(11): 62-67. [Li Y, Chen QZ, Fan LX, et al. Quercetin Affects Both DNA Repair and ROS Level to Improve Radiosensitivity of NSCLC Cells[J]. Zhong Yao Yao Li Yu Lin Chuang, 2023, 39(11): 62-67.]

    Li Y, Chen QZ, Fan LX, et al. Quercetin Affects Both DNA Repair and ROS Level to Improve Radiosensitivity of NSCLC Cells[J]. Zhong Yao Yao Li Yu Lin Chuang, 2023, 39(11): 62-67.
    [21]
    李阳杰, 姜亚玲, 刘秋伟, 等. 槲皮素衍生物的生物活性研究进展[J]. 中国药学杂志, 2021, 56(3): 175-180. [Li YJ, Jiang YL, Liu QW, et al. Progress in research on biological activity of quercetin derivatives[J]. Zhongguo Yao Xue Za Zhi, 2021, 56(3): 175-180.]

    Li YJ, Jiang YL, Liu QW, et al. Progress in research on biological activity of quercetin derivatives[J]. Zhongguo Yao Xue Za Zhi, 2021, 56(3): 175-180.
    [22]
    Hettiarachchi SD, Graham RM, Mintz KJ, et al. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors[J]. Nanoscale, 2019, 11(13): 6192-6205. doi: 10.1039/C8NR08970A
    [23]
    Liu HF, Li ZH, Sun YQ, et al. Synthesis of Luminescent Carbon Dots with Ultrahigh Quantum Yield and Inherent Folate Receptor-Positive Cancer Cell Targetability[J]. Sci Rep, 2018, 8(1): 1086. doi: 10.1038/s41598-018-19373-3
    [24]
    Bittleman KR, Dong S, Roman M, et al. Folic Acid-Conjugated Cellulose Nanocrystals Show High Folate-Receptor Binding Affinity and Uptake by KB and Breast Cancer Cells[J]. ACS Omega, 2018, 3(10): 13952-13959. doi: 10.1021/acsomega.8b01619
    [25]
    Afzal SM, Shareef MZ, Dinesh T, et al. Folate-PEG-decorated docetaxel lipid nanoemulsion for improved antitumor activity[J]. Nanomedicine (Lond), 2016, 11(16): 2171-2184. doi: 10.2217/nnm-2016-0120
    [26]
    李馥延, 霍达, 栾诗佳, 等. IL-6/JAK2/STAT3信号通路在肿瘤中的作用[J]. 生命的化学, 2021, 41(3): 535-540. [Li FY, Huo D, Luan SJ, et al. The role of the IL-6/JAK2/STAT3 signaling pathway in tumors[J]. Sheng Ming De Hua Xue, 2021, 41(3): 535-540.]

    Li FY, Huo D, Luan SJ, et al. The role of the IL-6/JAK2/STAT3 signaling pathway in tumors[J]. Sheng Ming De Hua Xue, 2021, 41(3): 535-540.
    [27]
    Liu YY, Zheng Q, Fang B, et al. Germacrone induces apoptosis in human hepatoma HepG2 cells through inhibition of the JAK2/STAT3 signalling pathway[J]. J Huazhong Univ Sci Technolog Med Sci, 2013, 33(3): 339-345. doi: 10.1007/s11596-013-1121-z
  • Cited by

    Periodical cited type(1)

    1. 闫红华. 能谱CT定量对肝脓肿和肝细胞癌的鉴别诊断价值分析. 影像研究与医学应用. 2025(08): 108-111 .

    Other cited types(0)

Catalog

    Figures(6)

    Article views (2181) PDF downloads (910) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return