Citation: | ZHANG Lin, HOU Yanhong, WU Kai, ZHANG Jing. Experimental Study on Treatment of Gastric Cancer with New Recombinant Oncolytic Vaccinia Virus Infection Combined with Immune Effective Cells and Immune Checkpoint Blocking[J]. Cancer Research on Prevention and Treatment, 2024, 51(6): 426-431. DOI: 10.3971/j.issn.1000-8578.2024.23.1380 |
To explore the significance of the combined strategy of oncolytic virus infection, immune effector cell supplement, and immune checkpoint blocking in the treatment of gastric cancer.
A tumor-bearing nude mouse model of gastric cancer was treated with recombinant oncolytic vaccinia virus carrying the CXCL9 gene of T lymphocyte chemokine and IL-7gene (VV-IL7-CXCL9) obtained in previous experiments. We established a triple-intervention group of recombinant oncolytic vaccinia virus intratumoral injection+cytotoxic T lymphocyte (CTL)+immune checkpoint blocker (PD-1 monoclonal antibody), a single-intervention group of three measures, a dual-intervention group, and a blank control group. After the intervention, tumor-growth curve method, tumor-inhibition rate method, and bioluminescence method were used to detect the tumor treatment effect. ELISA was used to detect CXCL9 and IL-7 molecule concentration in the serum and tissue homogenate of animals in each group.
The therapeutic results of animal models showed that the tumor growth in the triple-intervention group of recombinant oncolytic poxvirus+CTL+immune checkpoint blocker (PD-1 monoclonal antibody) was significantly slower than those in the other intervention and the blank control group.
The combination of recombinant oncolytic poxvirus intratumoral injection+CTL+immune checkpoint blocker (PD-1 monoclonal antibody) exert a strong antitumor effect in intervention experiments on gastric-cancer animal models.
Competing interests: The authors declare that they have no competing interests.
[1] |
Sun J, Li X, Chen P, et al. From Anti-HER-2 to Anti-HER-2-CAR-T Cells: An Evolutionary Immunotherapy Approach for Gastric Cancer[J]. J Inflamm Res, 2022, 15: 4061-4085. doi: 10.2147/JIR.S368138
|
[2] |
Cao W, Xing H, Li Y, et al. Claudin18.2 is a novel molecular biomarker for tumor- targeted immunotherapy[J]. Biomark Res, 2022, 10(1): 38. doi: 10.1186/s40364-022-00385-1
|
[3] |
Gu L, Chen M, Guo D, et al. PD-L1 and gastric cancer prognosis: A systematic review and meta-analysis[J]. PLoS One, 2017, 12(8): e0182692. doi: 10.1371/journal.pone.0182692
|
[4] |
Zhang L, Hou Y, Zhang J, et al. Cytotoxicity of cytokine-induced killer cells targeted by a bispecific antibody to gastric cancer cells[J]. Oncol Lett, 2013, 5(6): 1826-1832. doi: 10.3892/ol.2013.1281
|
[5] |
Zhang L, Zhao G, Hou Y, et al. The experimental study on the treatment of cytokine-induced killer cells combined with EGFR monoclonal antibody against gastric cancer[J]. Cancer Biother Radiopharm, 2014, 29(3): 99-107.
|
[6] |
Zuo S, Wei M, Xu T, et al. An engineered oncolytic vaccinia virus encoding a single-chain variable fragment against TIGIT induces effective antitumor immunity and synergizes with PD-1 or LAG-3 blockade[J]. J Immunother Cancer, 2021, 9(12): e002843. doi: 10.1136/jitc-2021-002843
|
[7] |
Marelli G, Chard Dunmall LS, Yuan M, et al. A systemically deliverable Vaccinia virus with increased capacity for intertumoral and intratumoral spread effectively treats pancreatic cancer[J]. J Immunother Cancer, 2021, 9(1): e001624. doi: 10.1136/jitc-2020-001624
|
[8] |
李春梅, 张林, 侯艳红, 等. 抗EGFR单抗偶联吉西他滨聚氰基丙烯酸正丁酯纳米粒对胰腺癌的靶向治疗[J]. 世界华人消化杂志, 2015, 23(12): 1890-1896. [Li CM, Zhang L, Hou YH, et al. Targeted treatment of pancreatic cancer with gemcitabine polybutylcyanoacrylate nanoparticles coupled with anti EGFR monoclonal antibody[J]. Shi Jie Hua Ren Xiao Hua Za Zhi, 2015, 23(12): 1890-1896.]
Li CM, Zhang L, Hou YH, et al. Targeted treatment of pancreatic cancer with gemcitabine polybutylcyanoacrylate nanoparticles coupled with anti EGFR monoclonal antibody[J]. Shi Jie Hua Ren Xiao Hua Za Zhi, 2015, 23(12): 1890-1896.
|
[9] |
肖琅, 杨春红, 刘迎午, 等. 双特异性抗体治疗小细胞肺癌的实验研究[J]. 实用癌症杂志, 2002, 17(3): 244-247. [Xiao L, Yang CH, Liu YW, et al. Treatment of Small Cell Lung Cancer with Bispecific Antibody[J]. Shi Yong Ai Zheng Za Zhi, 2002, 17(3): 244-247.] doi: 10.3969/j.issn.1001-5930.2002.03.006
Xiao L, Yang CH, Liu YW, et al. Treatment of Small Cell Lung Cancer with Bispecific Antibody[J]. Shi Yong Ai Zheng Za Zhi, 2002, 17(3): 244-247. doi: 10.3969/j.issn.1001-5930.2002.03.006
|
[10] |
王剑超, 范丽萍, 徐旭栋, 等. 活体成像技术动态观测华蟾素对裸小鼠BxPC3-luc2异体移植胰腺癌的抗肿瘤作用[J]. 浙江中医药大学学报, 2015, 39(9): 695-699. [Wang JC, Fan LP, Xu XD, et al. Effect of Cinobufotalin Inhibiting Pancreatic Cancer by Bioluminescent Imaging in the BxPC3-luc2 Cell Xenograft Nude Mice[J]. Zhejiang Zhong Yi Yao Da Xue Xue Bao, 2015, 39(9): 695-699.]
Wang JC, Fan LP, Xu XD, et al. Effect of Cinobufotalin Inhibiting Pancreatic Cancer by Bioluminescent Imaging in the BxPC3-luc2 Cell Xenograft Nude Mice[J]. Zhejiang Zhong Yi Yao Da Xue Xue Bao, 2015, 39(9): 695-699.
|
[11] |
李国新. 胃癌外科2021年研究进展及学科展望[J]. 中华胃肠外科杂志, 2022, 25(1): 15-21. [Li GX. Research progress and prospect of gastric cancer surgery in 2021[J]. Zhonghua Wei Chang Wai Ke Za Zhi, 2022, 25(1): 15-21.] doi: 10.3760/cma.j.cn441530-20211216-00503
Li GX. Research progress and prospect of gastric cancer surgery in 2021[J]. Zhonghua Wei Chang Wai Ke Za Zhi, 2022, 25(1): 15-21. doi: 10.3760/cma.j.cn441530-20211216-00503
|
[12] |
Lichtenstern CR, Ngu RK, Shalapour S, et al. Immunotherapy, Inflammation and Colorectal Cancer[J]. Cells, 2020, 9(3): 618. doi: 10.3390/cells9030618
|
[13] |
Li F, Chen Y, Pang M, et al. Immune checkpoint inhibitors and cellular treatment for lymphoma immunotherapy[J]. Clin Exp Immunol, 2021, 205(1): 1-11. doi: 10.1111/cei.13592
|
[14] |
Wang C, Kong L, Kim S, et al. The Role of IL-7 and IL-7R in Cancer Pathophysiology and Immunotherapy[J]. Int J Mol Sci, 2022, 23(18): 10412. doi: 10.3390/ijms231810412
|
[15] |
Kim JH, Lee KJ, Lee SW. Cancer immunotherapy with T-cell targeting cytokines: IL-2 and IL-7[J]. BMB Rep, 2021, 54(1): 21-30. doi: 10.5483/BMBRep.2021.54.1.257
|
[16] |
Seitz S, Dreyer TF, Stange C, et al. CXCL9 inhibits tumour growth and drives anti-PD-L1 therapy in ovarian cancer[J]. Br J Cancer, 2022, 126(10): 1470-1480. doi: 10.1038/s41416-022-01763-0
|
[17] |
Tokunaga R, Zhang W, Naseem M, et al. CXCL9, CXCL10, CXCL11/CXCR3 axis for immune activation-A target for novel cancer therapy[J]. Cancer Treat Rev, 2018, 63: 40-47. doi: 10.1016/j.ctrv.2017.11.007
|
1. |
朱翩, 杨凡, 周浪. 多模态MRI在前列腺癌疗效评价中的应用. 中国CT和MRI杂志. 2025(07)
![]() |