Advanced Search
CHEN Kaixing, WU Zhouying, YU Lan. CDK12/CDK13: New Hope for Targeted Therapy of Human Malignant Tumors[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 386-391. DOI: 10.3971/j.issn.1000-8578.2024.23.1176
Citation: CHEN Kaixing, WU Zhouying, YU Lan. CDK12/CDK13: New Hope for Targeted Therapy of Human Malignant Tumors[J]. Cancer Research on Prevention and Treatment, 2024, 51(5): 386-391. DOI: 10.3971/j.issn.1000-8578.2024.23.1176

CDK12/CDK13: New Hope for Targeted Therapy of Human Malignant Tumors

Funding: National Natural Science Foundation of China (No. 82260536, No. 81960449); Foundation of Inner Mongolia People′s Hospital (No. 2021YN13)
More Information
  • Corresponding author:

    YU Lan, E-mail: yulan@imph.ac.cn

  • Received Date: November 08, 2023
  • Revised Date: February 05, 2024
  • Available Online: August 08, 2024
  • Cell cycle turnover depends on cyclin-dependent kinase (CDKs). CDK is the protein kinase family that plays the key role in regulating cell cycle and gene transcription. CDK12 and CDK13 perform the essential work in DNA damage response, RNA splicing regulation, transcription, and cell cycle regulation. In recent years, CDK12 and CDK13 are expressed abnormally or mutated in a variety of cancers; thus, they are necessary in cancer development and have become popular topics of research. Based on literature from Google Scholar, PubMed, and WanFang database, aspects of CDK12 and CDK13 such as basic structure, biological function, correlation with malignant tumors, and research progress of targeted inhibitors are summarized to provide the direction for the subsequent research of the new targets and mechanisms for targeting therapy while offering a novel approach for the prevention, diagnosis, and treatment of malignant tumors in the future.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Wang Z. Cell Cycle Progression and Synchronization: An Overview[J]. Methods Mol Biol, 2022, 2579: 3-23.
    [2]
    Uzbekov R, Prigent C. A Journey through Time on the Discovery of Cell Cycle Regulation[J]. Cells, 2022, 11(4): 704. doi: 10.3390/cells11040704
    [3]
    Chou J, Quigley DA, Robinson TM, et al. Transcription-Associated Cyclin-Dependent Kinases as Targets and Biomarkers for Cancer Therapy[J]. Cancer Discov, 2020, 10(3): 351-370. doi: 10.1158/2159-8290.CD-19-0528
    [4]
    Greenleaf AL. Human CDK12 and CDK13, multi-tasking CTD kinases for the new millenium[J]. Transcription, 2019, 10(2): 91-110. doi: 10.1080/21541264.2018.1535211
    [5]
    Yang B, Chen J, Teng Y. CDK12 Promotes Cervical Cancer Progression through Enhancing Macrophage Infiltration[J]. J Immunol Res, 2021, 2021: 6645885.
    [6]
    Chen HH, Wang YC, Fann MJ. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation[J]. Mol Cell Biol, 2006, 26(7): 2736-2745. doi: 10.1128/MCB.26.7.2736-2745.2006
    [7]
    Liu H, Liu K, Dong Z. Targeting CDK12 for Cancer Therapy: Function, Mechanism, and Drug Discovery[J]. Cancer Res, 2021, 81(1): 18-26. doi: 10.1158/0008-5472.CAN-20-2245
    [8]
    Tadesse S, Duckett DR, Monastyrskyi A. The promise and current status of CDK12/13 inhibition for the treatment of cancer[J]. Future Med Chem, 2021, 13(2): 117-141. doi: 10.4155/fmc-2020-0240
    [9]
    Greifenberg AK, Hönig D, Pilarova K, et al. Structural and Functional Analysis of the Cdk13/Cyclin K Complex[J]. Cell Rep, 2016, 14(2): 320-331. doi: 10.1016/j.celrep.2015.12.025
    [10]
    Bartkowiak B, Liu P, Phatnani HP, et al. CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1[J]. Genes Dev, 2010, 24(20): 2303-2316. doi: 10.1101/gad.1968210
    [11]
    Chen FX, Smith ER, Shilatifard A. Born to run: control of transcription elongation by RNA polymerase Ⅱ[J]. Nat Rev Mol Cell Biol, 2018, 19(7): 464-478. doi: 10.1038/s41580-018-0010-5
    [12]
    Chirackal Manavalan AP, Pilarova K, Kluge M, et al. CDK12 controls G1/S progression by regulating RNAPII processivity at core DNA replication genes[J]. EMBO Rep, 2019, 20(9): e47592. doi: 10.15252/embr.201847592
    [13]
    Eifler TT, Shao W, Bartholomeeusen K, et al. Cyclin-dependent kinase 12 increases 3' end processing of growth factor-induced c-FOS transcripts[J]. Mol Cell Biol, 2015, 35(2): 468-478. doi: 10.1128/MCB.01157-14
    [14]
    Davidson L, Muniz L, West S. 3' end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase Ⅱ CTD are reciprocally coupled in human cells[J]. Genes Dev, 2014, 28(4): 342-356. doi: 10.1101/gad.231274.113
    [15]
    Rodrigues F, Thuma L, Klämbt C. The regulation of glial-specific splicing of Neurexin IV requires HOW and Cdk12 activity[J]. Development, 2012, 139(10): 1765-1776. doi: 10.1242/dev.074070
    [16]
    Liang K, Gao X, Gilmore JM, et al. Characterization of human cyclin-dependent kinase 12 (CDK12) and CDK13 complexes in C-terminal domain phosphorylation, gene transcription, and RNA processing[J]. Mol Cell Biol, 2015, 35(6): 928-938. doi: 10.1128/MCB.01426-14
    [17]
    Pilié PG, Tang C, Mills GB, et al. State-of-the-art strategies for targeting the DNA damage response in cancer[J]. Nat Rev Clin Oncol, 2019, 16(2): 81-104. doi: 10.1038/s41571-018-0114-z
    [18]
    Blazek D, Kohoutek J, Bartholomeeusen K, et al. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes[J]. Genes Dev, 2011, 25(20): 2158-2172. doi: 10.1101/gad.16962311
    [19]
    Liang S, Hu L, Wu Z, et al. CDK12: A Potent Target and Biomarker for Human Cancer Therapy[J]. Cells, 2020, 9(6): 1483. doi: 10.3390/cells9061483
    [20]
    Choi SH, Martinez TF, Kim S, et al. CDK12 phosphorylates 4E-BP1 to enable mTORC1-dependent translation and mitotic genome stability[J]. Genes Dev, 2019, 33(7-8): 418-435. doi: 10.1101/gad.322339.118
    [21]
    Bowman EA, Kelly WG. RNA polymerase Ⅱ transcription elongation and Pol Ⅱ CTD Ser2 phosphorylation: A tail of two kinases[J]. Nucleus, 2014, 5(3): 224-236. doi: 10.4161/nucl.29347
    [22]
    Lei T, Zhang P, Zhang X, et al. Cyclin K regulates prereplicative complex assembly to promote mammalian cell proliferation[J]. Nat Commun, 2018, 9(1): 1876. doi: 10.1038/s41467-018-04258-w
    [23]
    Dai Q, Lei T, Zhao C, et al. Cyclin K-containing kinase complexes maintain self-renewal in murine embryonic stem cells[J]. J Biol Chem, 2012, 287(30): 25344-25352. doi: 10.1074/jbc.M111.321760
    [24]
    杜新星, 夏斌彬, 吴凡, 等. CDK12突变在前列腺癌发生和发展以及临床诊疗中的研究进展[J]. 肿瘤, 2022, 42(3): 213-220. [Du XX, Xia BB, Wu F, et al. Progress in CDK12 mutation in occurrence and development of prostate cancer and its clinical diagnosis and treatment[J]. Zhong Liu, 2022, 42(3): 213-220.] doi: 10.3781/j.issn.1000-7431.2022.2104-0222

    Du XX, Xia BB, Wu F, et al. Progress in CDK12 mutation in occurrence and development of prostate cancer and its clinical diagnosis and treatment[J]. Zhong Liu, 2022, 42(3): 213-220. doi: 10.3781/j.issn.1000-7431.2022.2104-0222
    [25]
    Quigley DA, Dang HX, Zhao SG, et al. Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer[J]. Cell, 2018, 174(3): 758-769. e9.
    [26]
    Viswanathan SR, Ha G, Hoff AM, et al. Structural Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read Genome Sequencing[J]. Cell, 2018, 174(2): 433-447. e19.
    [27]
    Wu YM, Cieślik M, Lonigro RJ, et al. Inactivation of CDK12 Delineates a Distinct Immunogenic Class of Advanced Prostate Cancer [J]. Cell, 2018, 173(7): 1770-1782. e14.
    [28]
    Popova T, Manié E, Boeva V, et al. Ovarian Cancers Harboring Inactivating Mutations in CDK12 Display a Distinct Genomic Instability Pattern Characterized by Large Tandem Duplications[J]. Cancer Res, 2016, 76(7): 1882-1891. doi: 10.1158/0008-5472.CAN-15-2128
    [29]
    Vrdoljak J, Boban T, Petrić Miše B, et al. Efficacy and safety of TC dose-dense chemotherapy as first-line treatment of epithelial ovarian cancer: a single-institution retrospective cohort study[J]. Jpn J Clin Oncol, 2019, 49(4): 347-353. doi: 10.1093/jjco/hyz011
    [30]
    Quereda V, Bayle S, Vena F, et al. Therapeutic Targeting of CDK12/CDK13 in Triple-Negative Breast Cancer[J]. Cancer Cell, 2019, 36(5): 545-558. e7.
    [31]
    Choi HJ, Jin S, Cho H, et al. CDK12 drives breast tumor initiation and trastuzumab resistance via WNT and IRS1-ErbB-PI3K signaling[J]. EMBO Rep, 2019, 20(10): e48058. doi: 10.15252/embr.201948058
    [32]
    Emadi F, Teo T, Rahaman MH, et al. CDK12: a potential therapeutic target in cancer[J]. Drug Discov Today, 2020, 25(12): 2257-2267. doi: 10.1016/j.drudis.2020.09.035
    [33]
    Johnson SF, Cruz C, Greifenberg AK, et al. CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer[J]. Cell Rep, 2016, 17(9): 2367-2381. doi: 10.1016/j.celrep.2016.10.077
    [34]
    Liu H, Shin SH, Chen H, et al. CDK12 and PAK2 as novel therapeutic targets for human gastric cancer[J]. Theranostics, 2020, 10(14): 6201-6215. doi: 10.7150/thno.46137
    [35]
    李晓军. CDK12在胰腺癌中的表达及临床病理学意义[D]. 兰州: 兰州大学, 2021. [Li XJ. Expression of CDK12 in pancreatic cancer and its clinicopathological significance[D]. Lanzhou: Lanzhou University, 2021.]

    Li XJ. Expression of CDK12 in pancreatic cancer and its clinicopathological significance[D]. Lanzhou: Lanzhou University, 2021.
    [36]
    Rouxel F, Relator R, Kerkhof J, et al. CDK13-related disorder: Report of a series of 18 previously unpublished individuals and description of an epigenetic signature[J]. Genet Med, 2022, 24(5): 1096-1107. doi: 10.1016/j.gim.2021.12.016
    [37]
    Cui D, Wang S, Zhang A, et al. Case Report: Hemophagocytic Lymphohistiocytosis Prior to the Onset of Leukemia in a Boy With CDK13-Related Disorder[J]. Front Genet, 2022, 13: 858668. doi: 10.3389/fgene.2022.858668
    [38]
    Wu Z, Wang M, Li F, et al. CDK13-Mediated Cell Cycle Disorder Promotes Tumorigenesis of High HMGA2 Expression Gastric Cancer[J]. Front Mol Biosci, 2021, 8: 707295. doi: 10.3389/fmolb.2021.707295
    [39]
    Insco ML, Abraham BJ, Dubbury SJ, et al. Oncogenic CDK13 mutations impede nuclear RNA surveillance[J]. Science, 2023, 380(6642): eabn7625. doi: 10.1126/science.abn7625
    [40]
    Zhang T, Kwiatkowski N, Olson CM, et al. Covalent targeting of remote cysteine residues to develop CDK12 and CDK13 inhibitors[J]. Nat Chem Biol, 2016, 12(10): 876-84. doi: 10.1038/nchembio.2166
    [41]
    Henry KL, Kellner D, Bajrami B, et al. CDK12-mediated transcriptional regulation of noncanonical NF-κB components is essential for signaling[J]. Sci Signal, 2018, 11(541): eaam8216. doi: 10.1126/scisignal.aam8216
    [42]
    Shyamsunder P, Sridharan SP, Madan V, et al. THZ531 Induces a State of BRCAness in Multiple Myeloma Cells: Synthetic Lethality with Combination Treatment of THZ 531 with DNA Repair Inhibitors[J]. Int J Mol Sci, 2022, 23(3): 1207. doi: 10.3390/ijms23031207
    [43]
    Iniguez AB, Stolte B, Wang EJ, et al. EWS/FLI Confers Tumor Cell Synthetic Lethality to CDK12 Inhibition in Ewing Sarcoma [J]. Cancer Cell, 2018, 33(2): 202-216. e6.
    [44]
    Min A, Kim JE, Kim YJ, et al. Cyclin E overexpression confers resistance to the CDK4/6 specific inhibitor palbociclib in gastric cancer cells[J]. Cancer Lett, 2018, 430: 123-132. doi: 10.1016/j.canlet.2018.04.037
    [45]
    Jiang B, Jiang J, Kaltheuner IH, et al. Structure-activity relationship study of THZ531 derivatives enables the discovery of BSJ-01-175 as a dual CDK12/13 covalent inhibitor with efficacy in Ewing sarcoma[J]. Eur J Med Chem, 2021, 221: 113481. doi: 10.1016/j.ejmech.2021.113481
    [46]
    Johannes JW, Denz CR, Su N, et al. Structure-Based Design of Selective Noncovalent CDK12 Inhibitors[J]. ChemMedChem, 2018, 13(3): 231-235. doi: 10.1002/cmdc.201700695
    [47]
    Ito M, Tanaka T, Toita A, et al. Discovery of 3-Benzyl-1-( trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea Derivatives as Novel and Selective Cyclin-Dependent Kinase 12 (CDK12) Inhibitors[J]. J Med Chem, 2018, 61(17): 7710-7728. doi: 10.1021/acs.jmedchem.8b00683
    [48]
    Jiang B, Gao Y, Che J, et al. Discovery and resistance mechanism of a selective CDK12 degrader[J]. Nat Chem Biol, 2021, 17(6): 675-683. doi: 10.1038/s41589-021-00765-y

Catalog

    Article views (2110) PDF downloads (2480) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return