Citation: | CHE Xin, HU Zhen, WANG Yonggang, LI Yaoping. Research Progress on Mechanism of Action of DHODH in Progression of Malignant Tumors[J]. Cancer Research on Prevention and Treatment, 2024, 51(3): 216-219. DOI: 10.3971/j.issn.1000-8578.2024.23.1067 |
Dihydroorotate dehydrogenase (DHODH) is a flavin-dependent metabolic enzyme that oxidizes dihydroorotate acid to orotic acid in the de novo synthesis pathway of pyrimidine metabolism. DHODH is located in mitochondria, closely related to cellular oxidative phosphorylation, and an important suppressor of the ferroptosis pathway. This study investigates the influence of DHODH on the progression of malignant tumors, including its important role in the de novo synthesis of pyrimidine, oxidative phosphorylation, and ferroptosis. The objective is to present evidence that DHODH is a potential target for the clinical treatment of tumors.
Competing interests: The authors declare that they have no competing interests.
[1] |
Vyas VK, Ghate M. Recent developments in the medicinal chemistry and therapeutic potential of dihydroorotate dehydrogenase (DHODH) inhibitors[J]. Mini Rev Med Chem, 2011, 11(12): 1039-1055. doi: 10.2174/138955711797247707
|
[2] |
Phillips MA, Lotharius J, Marsh K, et al. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria[J]. Sci Transl Med, 2015, 7(296): 296ra111.
|
[3] |
Scott LJ. Teriflunomide: A Review in Relapsing-Remitting Multiple Sclerosis[J]. Drugs, 2019, 79(8): 875-886. doi: 10.1007/s40265-019-01135-8
|
[4] |
Li L, Ng SR, Colon CI, et al. Identification of DHODH as a therapeutic target in small cell lung cancer[J]. Sci Transl Med, 2019, 11(517): eaaw7852. doi: 10.1126/scitranslmed.aaw7852
|
[5] |
Wiese MD, Hopkins AM, King C, et al. Precision Medicine With Leflunomide: Consideration of the DHODH Haplotype and Plasma Teriflunomide Concentration and Modification of Outcomes in Patients With Rheumatoid Arthritis[J]. Arthritis Care Res (Hoboken), 2021, 73(7): 983-989. doi: 10.1002/acr.24236
|
[6] |
Yin S, Kabashima T, Zhu Q, et al. Fluorescence assay of dihydroorotate dehydrogenase that may become a cancer biomarker[J]. Sci Rep, 2017, 7: 40670. doi: 10.1038/srep40670
|
[7] |
Mao C, Liu X, Zhang Y, et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer[J]. Nature (London), 2021, 593(7860): 586-590. doi: 10.1038/s41586-021-03539-7
|
[8] |
Evans DR, Guy HI. Mammalian Pyrimidine Biosynthesis: Fresh Insights into an Ancient Pathway[J]. J Biol Chem, 2004, 279(32): 33035-33038. doi: 10.1074/jbc.R400007200
|
[9] |
Löffler M, Fairbanks LD, Zameitat E, et al. Pyrimidine pathways in health and disease[J]. Trends Mol Med, 2005, 11(9): 430-437. doi: 10.1016/j.molmed.2005.07.003
|
[10] |
Robinson AD, Eich ML, Varambally S. Dysregulation of de novo nucleotide biosynthetic pathway enzymes in cancer and targeting opportunities[J]. Cancer Lett, 2020, 470: 134-140. doi: 10.1016/j.canlet.2019.11.013
|
[11] |
Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy[J]. Cancer Res, 1998, 58(7): 1408-1416.
|
[12] |
Fairbanks LD, Bofill M, Ruckemann K, et al. Importance of ribonucleotide availability to proliferating T-lymphocytes from healthy humans. Disproportionate expansion of pyrimidine pools and contrasting effects of de novo synthesis inhibitors[J]. J Biol Chem, 1995, 270(50): 29682-29689. doi: 10.1074/jbc.270.50.29682
|
[13] |
Mathur D, Stratikopoulos E, Ozturk S, et al. PTEN Regulates Glutamine Flux to Pyrimidine Synthesis and Sensitivity to Dihydroorotate Dehydrogenase Inhibition[J]. Cancer Discov, 2017, 7(4): 380-390. doi: 10.1158/2159-8290.CD-16-0612
|
[14] |
Lewis TA, Sykes DB, Law JM, et al. Development of ML390: A Human DHODH Inhibitor That Induces Differentiation in Acute Myeloid Leukemia[J]. ACS Med Chem Lett, 2016, 7(12): 1112-1117. doi: 10.1021/acsmedchemlett.6b00316
|
[15] |
Hubackova S, Davidova E, Boukalova S, et al. Replication and ribosomal stress induced by targeting pyrimidine synthesis and cellular checkpoints suppress p53-deficient tumors[J]. Cell Death Dis, 2020, 11(2): 110. doi: 10.1038/s41419-020-2224-7
|
[16] |
Shi DD, Savani MR, Levitt MM, et al. De novo pyrimidine synthesis is a targetable vulnerability in IDH mutant glioma[J]. Cancer Cell, 2022, 40(9): 939-956. doi: 10.1016/j.ccell.2022.07.011
|
[17] |
Fardini Y, Dehennaut V, Lefebvre T, et al. O-GlcNAcylation: A New Cancer Hallmark?[J]. Frontiers in endocrinology (Lausanne), 2013, 4: 99.
|
[18] |
Sykes DB, Kfoury YS, Mercier FE, et al. Inhibition of Dihydroorotate Dehydrogenase Overcomes Differentiation Blockade in Acute Myeloid Leukemia[J]. Cell, 2016, 167(1): 171-186. doi: 10.1016/j.cell.2016.08.057
|
[19] |
Gwynne WD, Suk Y, Custers S, et al. Cancer-selective metabolic vulnerabilities in MYC-amplified medulloblastoma[J]. Cancer Cell, 2022, 40(12): 1488-1502. doi: 10.1016/j.ccell.2022.10.009
|
[20] |
Olsen TK, Dyberg C, Embaie BT, et al. DHODH is an independent prognostic marker and potent therapeutic target in neuroblastoma[J]. JCI Insight, 2022, 7(17): e153836. doi: 10.1172/jci.insight.153836
|
[21] |
He D, Chen M, Chang L, et al. De novo pyrimidine synthesis fuels glycolysis and confers chemoresistance in gastric cancer[J]. Cancer Lett, 2022, 549: 215837. doi: 10.1016/j.canlet.2022.215837
|
[22] |
Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain[J]. Nat Rev Mol Cell Biol, 2022, 23(2): 141-161. doi: 10.1038/s41580-021-00415-0
|
[23] |
Khutornenko AA, Roudko VV, Chernyak BV, et al. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway[J]. Proc Natl Acad Sci U S A, 2010, 107(29): 12828-12833. doi: 10.1073/pnas.0910885107
|
[24] |
Zhang Y, Luo T, Ding X, et al. Inhibition of mitochondrial complex Ⅲ induces differentiation in acute myeloid leukemia[J]. Biochem Biophys Res Commun, 2021, 547: 162-168. doi: 10.1016/j.bbrc.2021.02.027
|
[25] |
Martínez-Reyes I, Cardona LR, Kong H, et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth[J]. Nature (London), 2020, 585(7824): 288-292. doi: 10.1038/s41586-020-2475-6
|
[26] |
Bajzikova M, Kovarova J, Coelho AR, et al. Reactivation of Dihydroorotate Dehydrogenase-Driven Pyrimidine Biosynthesis Restores Tumor Growth of Respiration-Deficient Cancer Cells[J]. Cell Metab, 2019, 29(2): 399-416. doi: 10.1016/j.cmet.2018.10.014
|
[27] |
Spinelli JB, Rosen PC, Sprenger HG, et al. Fumarate is a terminal electron acceptor in the mammalian electron transport chain[J]. Science, 2021, 374(6572): 1227-1237. doi: 10.1126/science.abi7495
|
[28] |
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2): 88. doi: 10.1038/s41419-020-2298-2
|
[29] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An Iron-Dependent Form of Non-Apoptotic Cell Death[J]. Cell, 2012, 149(5): 1060-1072. doi: 10.1016/j.cell.2012.03.042
|
[30] |
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease[J]. Cell, 2017, 171(2): 273-285. doi: 10.1016/j.cell.2017.09.021
|
[31] |
Zhang Y, Shi J, Liu X, et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression[J]. Nat Cell Biol, 2018, 20(10): 1181-1192. doi: 10.1038/s41556-018-0178-0
|
[32] |
Qiu X, Jiang S, Xiao Y, et al. SOX2-dependent expression of dihydroorotate dehydrogenase regulates oral squamous cell carcinoma cell proliferation[J]. Int J Oral Sci, 2021, 13(1): 3. doi: 10.1038/s41368-020-00109-x
|
[33] |
Jiang M, Song Y, Liu H, et al. DHODH Inhibition Exerts Synergistic Therapeutic Effect with Cisplatin to Induce Ferroptosis in Cervical Cancer through Regulating mTOR Pathway[J]. Cancers (Basel), 2023, 15(2): 546. doi: 10.3390/cancers15020546
|
[34] |
Zhan M, Ding Y, Huang S, et al. Lysyl oxidase-like 3 restrains mitochondrial ferroptosis to promote liver cancer chemoresistance by stabilizing dihydroorotate dehydrogenase[J]. Nat Commun, 2023, 14(1): 3123. doi: 10.1038/s41467-023-38753-6
|
[35] |
Zhang S, Kang L, Dai X, et al. Manganese induces tumor cell ferroptosis through type-Ⅰ IFN dependent inhibition of mitochondrial dihydroorotate dehydrogenase[J]. Free Radic Biol Med, 2022, 193(Pt 1): 202-212.
|
[36] |
Amos A, Jiang N, Zong D, et al. Correction: Depletion of SOD2 enhances nasopharyngeal carcinoma cell radiosensitivity via ferroptosis induction modulated by DHODH inhibition[J]. BMC Cancer, 2023, 23(1): 462. doi: 10.1186/s12885-023-10969-1
|