Citation: | XING Siyuan, FAN Qingxia, SHAN Zhengzheng, MENG Xiangrui, WANG Feng. Exploration of Immune Tolerance and Treatment for Esophageal Cancer[J]. Cancer Research on Prevention and Treatment, 2023, 50(12): 1174-1179. DOI: 10.3971/j.issn.1000-8578.2023.23.0790 |
Monoclonal antibody drugs that inhibit programmed death 1 (PD-1) or programmed death ligand 1 (PD-L1) have been widely used in esophageal cancer (EC) and yielded significant therapeutic responses. However, only a few patients obtain lasting clinical benefits due to primary or acquired drug resistance, and new treatment schemes are urgently needed. The tumor immune microenvironment is the main factor that affects patients' response to immunosuppressive agents. This article will discuss the role of immunosuppressive cells and non-cellular components in the immune process to provide ideas for the next research direction of EC.
Competing interests: The authors declare that they have no competing interests.
[1] |
Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape[J]. Nat Immunol, 2002, 3(11): 991-998. doi: 10.1038/ni1102-991
|
[2] |
Zheng Y, Chen Z, Han Y, et al. Immune suppressive landscape in the human esophageal squamous cell carcinoma microenvironment[J]. Nat Commun, 2020, 11(1): 6268. doi: 10.1038/s41467-020-20019-0
|
[3] |
Öhlund D, Elyada E, Tuveson D. Fibroblast heterogeneity in the cancer wound[J]. J Exp Med, 2014, 211(8): 1503-1523. doi: 10.1084/jem.20140692
|
[4] |
Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9): 582-598. doi: 10.1038/nrc.2016.73
|
[5] |
Patel R, Filer A, Barone F, et al. Stroma: fertile soil for inflammation[J]. Best Pract Res Clin Rheumatol, 2014, 28(4): 565-576. doi: 10.1016/j.berh.2014.10.022
|
[6] |
Poggi A, Musso A, Dapino I, et al. Mechanisms of tumor escape from immune system: role of mesenchymal stromal cells[J]. Immunol Lett, 2014, 159(1-2): 55-72. doi: 10.1016/j.imlet.2014.03.001
|
[7] |
Fisher DT, Appenheimer MM, Evans SS. The two faces of IL-6 in the tumor microenvironment[J]. Semin Immunol, 2014, 26(1): 38-47. doi: 10.1016/j.smim.2014.01.008
|
[8] |
Khan MA, Chen HC, Zhang D, et al. Twist: a molecular target in cancer therapeutics[J]. Tumour Biol, 2013, 34(5): 2497-2506. doi: 10.1007/s13277-013-1002-x
|
[9] |
Chen MF, Chen PT, Lu MS, et al. Role of ALDH1 in the prognosis of esophageal cancer and its relationship with tumor microenvironment[J]. Mol Carcinog, 2018, 57(1): 78-88. doi: 10.1002/mc.22733
|
[10] |
Ebbing EA, van der Zalm AP, Steins A, et al. Stromal-derived interleukin 6 drives epithelial-to-mesenchymal transition and therapy resistance in esophageal adenocarcinoma[J]. Proc Natl Acad Sci U S A, 2019, 116(6): 2237-2242. doi: 10.1073/pnas.1820459116
|
[11] |
Karakasheva TA, Lin EW, Tang Q, et al. IL-6 Mediates Cross-Talk between Tumor Cells and Activated Fibroblasts in the Tumor Microenvironment[J]. Cancer Res, 2018, 78(17): 4957-4970. doi: 10.1158/0008-5472.CAN-17-2268
|
[12] |
Paul S, Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy[J]. Front Immunol, 2017, 8: 1124. doi: 10.3389/fimmu.2017.01124
|
[13] |
Wu J, Gao FX, Wang C, et al. IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma[J]. J Exp Clin Cancer Res, 2019, 38(1): 321. doi: 10.1186/s13046-019-1310-0
|
[14] |
Chen MF, Kuan FC, Yen TC, et al. IL-6-stimulated CD11b+ CD14+ HLA-DR- myeloid-derived suppressor cells, are associated with progression and poor prognosis in squamous cell carcinoma of the esophagus[J]. Oncotarget, 2014, 5(18): 8716-8728. doi: 10.18632/oncotarget.2368
|
[15] |
Qiu L, Yue J, Ding L, et al. Cancer-associated fibroblasts: An emerging target against esophageal squamous cell carcinoma[J]. Cancer Lett, 2022, 546: 215860. doi: 10.1016/j.canlet.2022.215860
|
[16] |
Kato T, Noma K, Ohara T, et al. Cancer-Associated Fibroblasts Affect Intratumoral CD8+ and FoxP3+ T Cells Via IL6 in the Tumor Microenvironment[J]. Clin Cancer Res, 2018, 24(19): 4820-4833. doi: 10.1158/1078-0432.CCR-18-0205
|
[17] |
Huang TX, Tan XY, Huang HS, et al. Targeting cancer-associated fibroblast-secreted WNT2 restores dendritic cell-mediated antitumour immunity[J]. Gut, 2022, 71(2): 333-344. doi: 10.1136/gutjnl-2020-322924
|
[18] |
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immunol, 2003, 4(4): 330-336. doi: 10.1038/ni904
|
[19] |
Linterman MA, Pierson W, Lee SK, et al. Foxp3+ follicular regulatory T cells control the germinal center response[J]. Nat Med, 2011, 17(8): 975-982. doi: 10.1038/nm.2425
|
[20] |
Tekguc M, Wing JB, Osaki M, et al. Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells[J]. Proc Natl Acad Sci U S A, 2021, 118(30): e2023739118. doi: 10.1073/pnas.2023739118
|
[21] |
Fourcade J, Sun Z, Kudela P, et al. Human tumor antigen-specific helper and regulatory T cells share common epitope specificity but exhibit distinct T cell repertoire[J]. J Immunol, 2010, 184(12): 6709-6718. doi: 10.4049/jimmunol.0903612
|
[22] |
Xia C, Yin S, To KKW, et al. CD39/CD73/A2AR pathway and cancer immunotherapy[J]. Mol Cancer, 2023, 22(1): 44. doi: 10.1186/s12943-023-01733-x
|
[23] |
Schneider E, Rissiek A, Winzer R, et al. Generation and Function of Non-cell-bound CD73 in Inflammation[J]. Front Immunol, 2019, 10: 1729. doi: 10.3389/fimmu.2019.01729
|
[24] |
Guo S, Han F, Zhu W. CD39 - A bright target for cancer immunotherapy[J]. Biomed Pharmacother, 2022, 151: 113066. doi: 10.1016/j.biopha.2022.113066
|
[25] |
Faas MM, Sáez T, de Vos P. Extracellular ATP and adenosine: The Yin and Yang in immune responses?[J]. Mol Aspects Med, 2017, 55: 9-19. doi: 10.1016/j.mam.2017.01.002
|
[26] |
Marin-Acevedo JA, Kimbrough EO, Lou Y. Next generation of immune checkpoint inhibitors and beyond[J]. J Hematol Oncol, 2021, 14(1): 45. doi: 10.1186/s13045-021-01056-8
|
[27] |
Canale FP, Ramello MC, Núñez N, et al. CD39 Expression Defines Cell Exhaustion in Tumor-Infiltrating CD8+ T Cells[J]. Cancer Res, 2018, 78(1): 115-128. doi: 10.1158/0008-5472.CAN-16-2684
|
[28] |
Brauneck F, Seubert E, Wellbrock J, et al. Combined Blockade of TIGIT and CD39 or A2AR Enhances NK-92 Cell-Mediated Cytotoxicity in AML[J]. Int J Mol Sci, 2021, 22(23): 12919. doi: 10.3390/ijms222312919
|
[29] |
Kamai T, Kijima T, Tsuzuki T, et al. Increased expression of adenosine 2A receptors in metastatic renal cell carcinoma is associated with poorer response to anti-vascular endothelial growth factor agents and anti-PD-1/Anti-CTLA4 antibodies and shorter survival[J]. Cancer Immunol Immunother, 2021, 70(7): 2009-2021. doi: 10.1007/s00262-020-02843-x
|
[30] |
Willingham SB, Hotson AN, Miller RA. Targeting the A2AR in cancer; early lessons from the clinic[J]. Curr Opin Pharmacol, 2020, 53: 126-133. doi: 10.1016/j.coph.2020.08.003
|
[31] |
Sawant DV, Yano H, Chikina M, et al. Adaptive plasticity of il-10(+) and il-35(+) T(Reg) cells cooperatively promotes tumor T cell exhaustion[J]. Nat Immunol, 2019, 20(6): 724-735. doi: 10.1038/s41590-019-0346-9
|
[32] |
Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3[J]. J Exp Med, 2003, 198(12): 1875-1886. doi: 10.1084/jem.20030152
|
[33] |
Zhang H, Xie C, Yue J, et al. Cancer-associated fibroblasts mediated chemoresistance by a FOXO1/TGFβ1 signaling loop in esophageal squamous cell carcinoma[J]. Mol Carcinog, 2017, 56(3): 1150-1163. doi: 10.1002/mc.22581
|
[34] |
Hatogai K, Kitano S, Fujii S, et al. Comprehensive immunohistochemical analysis of tumor microenvironment immune status in esophageal squamous cell carcinoma[J]. Oncotarget, 2016, 7(30): 47252-47264. doi: 10.18632/oncotarget.10055
|
[35] |
Ostuni R, Kratochvill F, Murray PJ, et al. Macrophages and cancer: from mechanisms to therapeutic implications[J]. Trends Immunol, 2015, 36(4): 229-239. doi: 10.1016/j.it.2015.02.004
|
[36] |
Mantovani A, Sozzani S, Locati M, et al. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes[J]. Trends Immunol, 2002, 23(11): 549-555. doi: 10.1016/S1471-4906(02)02302-5
|
[37] |
Lu Y, Guo L, Ding G. PD1+ tumor associated macrophages predict poor prognosis of locally advanced esophageal squamous cell carcinoma[J]. Future Oncol, 2019, 15(35): 4019-4030. doi: 10.2217/fon-2019-0519
|
[38] |
Gao J, Liang Y, Wang L. Shaping Polarization of Tumor-Associated Macrophages in Cancer Immunotherapy[J]. Front Immunol, 2022, 13: 888713. doi: 10.3389/fimmu.2022.888713
|
[39] |
Li J, Xie Y, Wang X, et al. Prognostic impact of tumor-associated macrophage infiltration in esophageal cancer: a meta-analysis[J]. Future Oncol, 2019, 15(19): 2303-2317. doi: 10.2217/fon-2018-0669
|
[40] |
Yagi T, Baba Y, Okadome K, et al. Tumour-associated macrophages are associated with poor prognosis and programmed death ligand 1 expression in oesophageal cancer[J]. Eur J Cancer, 2019, 111: 38-49. doi: 10.1016/j.ejca.2019.01.018
|
[41] |
Ohta M, Kitadai Y, Tanaka S, et al. Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas[J]. Int J Cancer, 2002, 102(3): 220-224. doi: 10.1002/ijc.10705
|
[42] |
Hu JM, Liu K, Liu JH, et al. The increased number of tumor-associated macrophage is associated with overexpression of VEGF-C, plays an important role in Kazakh ESCC invasion and metastasis[J]. Exp Mol Pathol, 2017, 102(1): 15-21. doi: 10.1016/j.yexmp.2016.12.001
|
[43] |
Yang H, Zhang Q, Xu M, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis[J]. Mol Cancer, 2020, 19(1): 41. doi: 10.1186/s12943-020-01165-x
|
[44] |
Willingham SB, Volkmer JP, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors[J]. Proc Natl Acad Sci U S A, 2012, 109(17): 6662-6667. doi: 10.1073/pnas.1121623109
|
[45] |
Jaiswal S, Jamieson CH, Pang WW, et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis[J]. Cell, 2009, 138(2): 271-285. doi: 10.1016/j.cell.2009.05.046
|
[46] |
Weiskopf K, Jahchan NS, Schnorr PJ, et al. CD47-blocking immunotherapies stimulate macrophage-mediated destruction of small-cell lung cancer[J]. J Clin Invest, 2016, 126(7): 2610-2620. doi: 10.1172/JCI81603
|
[47] |
Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-Regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis[J]. Cancer Res, 2005, 65(24): 11743-11751. doi: 10.1158/0008-5472.CAN-05-0045
|
[48] |
Huang H, Zhang G, Li G, et al. Circulating Cd14(+)Hla-Dr(-/Low) myeloid-derived suppressor cell is an indicator of poor prognosis in patients with escc[J]. Tumour Biol, 2015, 36(10): 7987-7996. doi: 10.1007/s13277-015-3426-y
|
[49] |
Chen X, Wang L, Li P, et al. Dual TGF-β and PD-1 blockade synergistically enhances MAGE-A3-specific CD8+ T cell response in esophageal squamous cell carcinoma[J]. Int J Cancer, 2018, 143(10): 2561-2574. doi: 10.1002/ijc.31730
|
[50] |
Tan B, Shi X, Zhang J, et al. Inhibition of Rspo-Lgr4 Facilitates Checkpoint Blockade Therapy by Switching Macrophage Polarization[J]. Cancer Res, 2018, 78(17): 4929-4942. doi: 10.1158/0008-5472.CAN-18-0152
|
[51] |
Barcellos-de-Souza P, Comito G, Pons-Segura C, et al. Mesenchymal Stem Cells are Recruited and Activated into Carcinoma-Associated Fibroblasts by Prostate Cancer Microenvironment-Derived TGF-β1[J]. Stem Cells, 2016, 34(10): 2536-2547. doi: 10.1002/stem.2412
|
[52] |
Zhu H, Shan Y, Ge K, et al. Oxaliplatin induces immunogenic cell death in hepatocellular carcinoma cells and synergizes with immune checkpoint blockade therapy[J]. Cell Oncol (Dordr), 2020, 43(6): 1203-1214.
|
[53] |
Noordam L, Kaijen MEH, Bezemer K, et al. Low-dose cyclophosphamide depletes circulating naïve and activated regulatory T cells in malignant pleural mesothelioma patients synergistically treated with dendritic cell-based immunotherapy[J]. Oncoimmunology, 2018, 7(12): e1474318. doi: 10.1080/2162402X.2018.1474318
|
[54] |
Wanderley CW, Colón DF, Luiz JPM, et al. Paclitaxel Reduces Tumor Growth by Reprogramming Tumor-Associated Macrophages to an M1 Profile in a TLR4-Dependent Manner[J]. Cancer Res, 2018, 78(20): 5891-5900. doi: 10.1158/0008-5472.CAN-17-3480
|
[55] |
Doki Y, Ajani JA, Kato K, et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma[J]. N Engl J Med, 2022, 386(5): 449-462. doi: 10.1056/NEJMoa2111380
|
[56] |
Meng X, Wu T, Hong Y, et al. Camrelizumab plus apatinib as second-line treatment for advanced oesophageal squamous cell carcinoma (CAP 02): a single-arm, open-label, phase 2 trial[J]. Lancet Gastroenterol Hepatol, 2022, 7(3): 245-253. doi: 10.1016/S2468-1253(21)00378-2
|
[57] |
Tang Y, Ou Z, Yao Z, et al. A case report of immune checkpoint inhibitor nivolumab combined with anti-angiogenesis agent anlotinib for advanced esophageal squamous cell carcinoma[J]. Medicine (Baltimore), 2019, 98(40): e17164. doi: 10.1097/MD.0000000000017164
|
[58] |
Nocentini A, Capasso C, Supuran CT. Small-molecule CD73 inhibitors for the immunotherapy of cancer: a patent and literature review (2017-present)[J]. Expert Opin Ther Pat, 2021, 31(10): 867-876. doi: 10.1080/13543776.2021.1923694
|
[59] |
Häusler SF, Del Barrio IM, Diessner J, et al. Anti-CD39 and anti-CD73 antibodies A1 and 7G2 improve targeted therapy in ovarian cancer by blocking adenosine-dependent immune evasion[J]. Am J Transl Res, 2014, 6(2): 129-139.
|
[60] |
Jiang H, Hegde S, Knolhoff BL, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy[J]. Nat Med, 2016, 22(8): 851-860. doi: 10.1038/nm.4123
|
[61] |
Chen IX, Chauhan VP, Posada J, et al. Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer[J]. Proc Natl Acad Sci U S A, 2019, 116(10): 4558-4566. doi: 10.1073/pnas.1815515116
|
1. |
朱翩, 杨凡, 周浪. 多模态MRI在前列腺癌疗效评价中的应用. 中国CT和MRI杂志. 2025(07)
![]() |