Citation: | XIONG Yixiao, YANG Shengli, ZHANG Wanguang. Progress of Research on Tumor Extracellular Matrix and Discoidin Domain Receptor 1[J]. Cancer Research on Prevention and Treatment, 2023, 50(8): 800-807. DOI: 10.3971/j.issn.1000-8578.2023.23.0247 |
Tumor extracellular matrix (ECM) is the center component of tumor microenvironment (TME), ECM diversity constitutes the inherent heterogeneity of TME that contributes to tumor growth, dormancy, drug resistance, and metastasis. Discoidin domain receptor 1 is one of the ECM receptors that interact with multiple ECM ligands. It also regulates the occurrence and development of tumors. Accordingly, DDR1 plays an increasingly important role in the prevention, diagnosis, and treatment of cancer. In this review, we primarily summarize the research of ECM and its receptors with components, regulation, cell receptors, and signaling pathways in tumor progression.
Competing interests: The authors declare that they have no competing interests.
[1] |
Ewald CY. The Matrisome during Aging and Longevity: A Systems-Level Approach toward Defining Matreotypes Promoting Healthy Aging[J]. Gerontology, 2020, 66(3): 266-274. doi: 10.1159/000504295
|
[2] |
Eble JA, Niland S. The extracellular matrix in tumor progression and metastasis[J]. Clin Exp Metastasis, 2019, 36(3): 171-198. doi: 10.1007/s10585-019-09966-1
|
[3] |
Huang J, Zhang L, Wan D, et al. Extracellular matrix and its therapeutic potential for cancer treatment[J]. Signal Transduct Target Ther, 2021, 6(1): 153. doi: 10.1038/s41392-021-00544-0
|
[4] |
Cox TR. The matrix in cancer[J]. Nat Rev Cancer, 2021, 21(4): 217-238. doi: 10.1038/s41568-020-00329-7
|
[5] |
Fang M, Yuan J, Peng C, et al. Collagen as a double-edged sword in tumor progression[J]. Tumour Biol, 2014, 35(4): 2871-2882. doi: 10.1007/s13277-013-1511-7
|
[6] |
Piersma B, Hayward M, Weaver VM. Fibrosis and cancer: A strained relationship[J]. Biochim Biophys Acta Rev Cancer, 2020, 1873(2): 188356. doi: 10.1016/j.bbcan.2020.188356
|
[7] |
Provenzano PP, Eliceiri KW, Campbell JM, et al. Collagen reorganization at the tumor-stromal interface facilitates local invasion[J]. BMC Med, 2006, 4(1): 38. doi: 10.1186/1741-7015-4-38
|
[8] |
Affo S, Nair A, Brundu F, et al. Promotion of cholangiocarcinoma growth by diverse cancer-associated fibroblast subpopulations[J]. Cancer Cell, 2021, 39(6): 866-882. doi: 10.1016/j.ccell.2021.03.012
|
[9] |
Di Martino JS, Nobre AR, Mondal C, et al. A tumor-derived type Ⅲ collagen-rich ECM niche regulates tumor cell dormancy[J]. Nat Cancer, 2022, 3(1): 90-107.
|
[10] |
Chen Y, Kim J, Yang S, et al. Type Ⅰ collagen deletion in αSMA+ myofibroblasts augments immune suppression and accelerates progression of pancreatic cancer[J]. Cancer Cell, 2021, 39(4): 548-565. doi: 10.1016/j.ccell.2021.02.007
|
[11] |
Cui Y, Miao C, Liu S, et al. Clusterin suppresses invasion and metastasis of testicular seminoma by upregulating COL15a1[J]. Mol Ther Nucleic Acids, 2021, 26: 1336-1350. doi: 10.1016/j.omtn.2021.11.004
|
[12] |
Wang Q, Chi L. The Alterations and Roles of Glycosaminoglycans in Human Diseases[J]. Polymers (Basel), 2022, 14(22): 5014. doi: 10.3390/polym14225014
|
[13] |
Iozzo RV, Schaefer L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans[J]. Matrix Biol, 2015, 42: 11-55. doi: 10.1016/j.matbio.2015.02.003
|
[14] |
Chen C, Zhao S, Karnad A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64. doi: 10.1186/s13045-018-0605-5
|
[15] |
Shivatare SS, Shivatare VS, Wong CH. Glycoconjugates: Synthesis, Functional Studies, and Therapeutic Developments[J]. Chem Rev, 2022, 122(20): 15603-15671. doi: 10.1021/acs.chemrev.1c01032
|
[16] |
Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease[J]. Nat Rev Mol Cell Biol, 2014, 15(12): 786-801.
|
[17] |
Myllyharju J. Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis[J]. Matrix Biol, 2003, 22(1): 15-24. doi: 10.1016/S0945-053X(03)00006-4
|
[18] |
Apte SS, Parks WC. Metalloproteinases: A parade of functions in matrix biology and an outlook for the future[J]. Matrix Biol, 2015, 44-46: 1-6. doi: 10.1016/j.matbio.2015.04.005
|
[19] |
Ye M, Song Y, Pan S, et al. Evolving roles of lysyl oxidase family in tumorigenesis and cancer therapy[J]. Pharmacol Ther, 2020, 215: 107633. doi: 10.1016/j.pharmthera.2020.107633
|
[20] |
Vlodavsky I, Singh P, Boyango I, et al. Heparanase: From basic research to therapeutic applications in cancer and inflammation[J]. Drug Resist Updat, 2016, 29: 54-75. doi: 10.1016/j.drup.2016.10.001
|
[21] |
Paolillo M, Schinelli S. Extracellular Matrix Alterations in Metastatic Processes[J]. Int J Mol Sci, 2019, 20(19): 4947. doi: 10.3390/ijms20194947
|
[22] |
Alonso-nocelo M, Ruiz-cañas L, Sancho P, et al. Macrophages direct cancer cells through a LOXL2-mediated metastatic cascade in pancreatic ductal adenocarcinoma[J]. Gut, 2023, 72(2): 345-359. doi: 10.1136/gutjnl-2021-325564
|
[23] |
Koorman T, Jansen KA, Khalil A, et al. Spatial collagen stiffening promotes collective breast cancer cell invasion by reinforcing extracellular matrix alignment[J]. Oncogene, 2022, 41(17): 2458-2469. doi: 10.1038/s41388-022-02258-1
|
[24] |
Hu L, Wang J, Wang Y, et al. LOXL1 modulates the malignant progression of colorectal cancer by inhibiting the transcriptional activity of YAP[J]. Cell Commun Signal, 2020, 18(1): 148. doi: 10.1186/s12964-020-00639-1
|
[25] |
Chitty JL, Setargew Y, Cox TR. Targeting the lysyl oxidases in tumour desmoplasia[J]. Biochem Soc Trans, 2019, 47(6): 1661-1678. doi: 10.1042/BST20190098
|
[26] |
Ibrahim ZA, Armour CL, Phipps S, et al. RAGE and TLRs: Relatives, friends or neighbours?[J]. Mol Immunol, 2013, 56(4): 739-744. doi: 10.1016/j.molimm.2013.07.008
|
[27] |
Ahmad S, Khan H, Siddiqui Z, et al. AGEs, RAGEs and s-RAGE; friend or foe for cancer[J]. Semin Cancer Biol, 2018, 49: 44-55. doi: 10.1016/j.semcancer.2017.07.001
|
[28] |
Haque E, Kamil M, Hasan A, et al. Advanced glycation end products (AGEs), protein aggregation and their cross talk: new insight in tumorigenesis[J]. Glycobiology, 2020, 30(1): 2-18. doi: 10.1093/glycob/cwz073
|
[29] |
Ge J, Cui H, Xie N, et al. Glutaminolysis Promotes Collagen Translation and Stability via α-Ketoglutarate–mediated mTOR Activation and Proline Hydroxylation[J]. Am J Respir Cell Mol Biol, 2018, 58(3): 378-390. doi: 10.1165/rcmb.2017-0238OC
|
[30] |
Lee J, Condello S, Yakubov B, et al. Tissue Transglutaminase Mediated Tumor–Stroma Interaction Promotes Pancreatic Cancer Progression[J]. Clin Cancer Res, 2015, 21(19): 4482-4493. doi: 10.1158/1078-0432.CCR-15-0226
|
[31] |
Theocharis AD, Skandalis SS, Gialeli C, et al. Extracellular matrix structure[J]. Adv Drug Deliv Rev, 2016, 97: 4-27. doi: 10.1016/j.addr.2015.11.001
|
[32] |
Hynes RO, Naba A. Overview of the Matrisome-An Inventory of Extracellular Matrix Constituents and Functions[J]. Cold Spring Harb Perspect Biol, 2012, 4(1): a004903.
|
[33] |
Kessenbrock K, Plaks V, Werb Z. Matrix Metalloproteinases: Regulators of the Tumor Microenvironment[J]. Cell, 2010, 141(1): 52-67. doi: 10.1016/j.cell.2010.03.015
|
[34] |
Juurikka K, Dufour A, Pehkonen K, et al. MMP8 increases tongue carcinoma cell–cell adhesion and diminishes migration via cleavage of anti-adhesive FXYD5[J]. Oncogenesis, 2021, 10(5): 44. doi: 10.1038/s41389-021-00334-x
|
[35] |
Huu Hoang T, Sato-matsubara M, Yuasa H, et al. Cancer cells produce liver metastasis via gap formation in sinusoidal endothelial cells through proinflammatory paracrine mechanisms[J]. Sci Adv, 2022, 8(39): eabo5525. doi: 10.1126/sciadv.abo5525
|
[36] |
Grieco M, Ursini O, Palamà IE, et al. HYDRHA: Hydrogels of hyaluronic acid. New biomedical approaches in cancer, neurodegenerative diseases, and tissue engineering[J]. Mater Today Bio, 2022, 17: 100453. doi: 10.1016/j.mtbio.2022.100453
|
[37] |
Liu M, Tolg C, Turley E. Dissecting the Dual Nature of Hyaluronan in the Tumor Microenvironment[J]. Front Immunol 2019, 10: 947. doi: 10.3389/fimmu.2019.00947
|
[38] |
Jami M, Hou J, Liu M, et al. Functional proteomic analysis reveals the involvement of KIAA1199 in breast cancer growth, motility and invasiveness[J]. BMC Cancer, 2014, 14(1): 194. doi: 10.1186/1471-2407-14-194
|
[39] |
Fatima K, Masood N, Ahmad Wani Z, et al. Neomenthol prevents the proliferation of skin cancer cells by restraining tubulin polymerization and hyaluronidase activity[J]. J Adv Res, 2021, 34: 93-107. doi: 10.1016/j.jare.2021.06.003
|
[40] |
Arai J, Otoyama Y, Nozawa H, et al. The immunological role of ADAMs in the field of gastroenterological chronic inflammatory diseases and cancers: a review[J]. Oncogene, 2023, 42(8): 549-558. doi: 10.1038/s41388-022-02583-5
|
[41] |
Sharma D, Singh NK. The Biochemistry and Physiology of A Disintegrin and Metalloproteinases (ADAMs and ADAM-TSs) in Human Pathologies[J]. Rev Physiol Biochem Pharmacol, 2023, 184: 69-120.
|
[42] |
Kataoka H. EGFR ligands and their signaling scissors, ADAMs, as new molecular targets for anticancer treatments[J]. J Dermatol Sci, 2009, 56(3): 148-153. doi: 10.1016/j.jdermsci.2009.10.002
|
[43] |
Olson OC, Joyce JA. Cysteine cathepsin proteases: regulators of cancer progression and therapeutic response[J]. Nat Rev Cancer, 2015, 15(12): 712-729. doi: 10.1038/nrc4027
|
[44] |
Vizovišek M, Fonović M, Turk B. Cysteine cathepsins in extracellular matrix remodeling: Extracellular matrix degradation and beyond[J]. Matrix Biol, 2019, 75-76: 141-159. doi: 10.1016/j.matbio.2018.01.024
|
[45] |
Mierke CT. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells[J]. Rep Prog Phys, 2019, 82(6): 64602. doi: 10.1088/1361-6633/ab1628
|
[46] |
Zeke A, Lukács M, Lim WA, et al. Scaffolds: interaction platforms for cellular signalling circuits[J]. Trends in Cell Biol, 2009, 19(8): 364-374. doi: 10.1016/j.tcb.2009.05.007
|
[47] |
Chaudhuri O, Gu L, Darnell M, et al. Substrate stress relaxation regulates cell spreading[J]. Nat Commun, 2015, 6: 6364. doi: 10.1038/ncomms7364
|
[48] |
Chen YQ, Kuo JC, Wei MT, et al. Early stage mechanical remodeling of collagen surrounding head and neck squamous cell carcinoma spheroids correlates strongly with their invasion capability[J]. Acta Biomater, 2019, 84: 280-292. doi: 10.1016/j.actbio.2018.11.046
|
[49] |
Kechagia JZ, Ivaska J, Roca-cusachs P. Integrins as biomechanical sensors of the microenvironment[J]. Nat Rev Mol Cell Biol, 2019, 20(8): 457-473. doi: 10.1038/s41580-019-0134-2
|
[50] |
Mas-moruno C, Fraioli R, Rechenmacher F, et al. αvβ3- or α5β1-Integrin-Selective Peptidomimetics for Surface Coating[J]. Angew Chem Inter Ed Engl, 2016, 55(25): 7048-7067. doi: 10.1002/anie.201509782
|
[51] |
Kuninty PR, Bansal R, De Geus SWL, et al. ITGA5 inhibition in pancreatic stellate cells attenuates desmoplasia and potentiates efficacy of chemotherapy in pancreatic cancer[J]. Sci Adv, 2019, 5(9): eaax2770. doi: 10.1126/sciadv.aax2770
|
[52] |
Xiong J, Yan L, Zou C, et al. Integrins regulate stemness in solid tumor: an emerging therapeutic target[J]. J Hematol Oncol, 2021, 14(1): 177. doi: 10.1186/s13045-021-01192-1
|
[53] |
Wang J, Xie S, Li N, et al. Matrix stiffness exacerbates the proinflammatory responses of vascular smooth muscle cell through the DDR1-DNMT1 mechanotransduction axis[J]. Bioact Mater, 2022, 17: 406-424. doi: 10.1016/j.bioactmat.2022.01.012
|
[54] |
Peng DH, Rodriguez BL, Diao L, et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8+ T cell exhaustion[J]. Nat Commun, 2020, 11(1): 4520. doi: 10.1038/s41467-020-18298-8
|
[55] |
Barrow AD, Raynal N, Andersen TL, et al. OSCAR is a collagen receptor that costimulates osteoclastogenesis in DAP12-deficient humans and mice[J]. J Clin Invest, 2011, 121(9): 3505-3516. doi: 10.1172/JCI45913
|
[56] |
Nørregaard KS, Jürgensen HJ, Ingvarsen SZ, et al. The endocytic receptor uPARAP is a regulator of extracellular thrombospondin-1[J]. Matrix Biol, 2022, 111: 307-328. doi: 10.1016/j.matbio.2022.07.004
|
[57] |
Cloutier G, Sallenbach-Morrissette A, Beaulieu JF. Non-integrin laminin receptors in epithelia[J]. Tissue Cell, 2019, 56: 71-78. doi: 10.1016/j.tice.2018.12.005
|
[58] |
Ngai D, Mohabeer AL, Mao A, et al. Stiffness-responsive feedback autoregulation of DDR1 expression is mediated by a DDR1-YAP/TAZ axis[J]. Matrix Biol, 2022, 110: 129-140. doi: 10.1016/j.matbio.2022.05.004
|
[59] |
Guo J, Zhang Z, Ding K. A patent review of discoidin domain receptor 1 (DDR1) modulators (2014-present)[J]. Expert Opin Ther Pat, 2020, 30(5): 341-350. doi: 10.1080/13543776.2020.1732925
|
[60] |
Vogel WF, Aszódi A, Alves F, et al. Discoidin Domain Receptor 1 Tyrosine Kinase Has an Essential Role in Mammary Gland Development[J]. Mol Cell Biol, 2001, 21(8): 2906-2917. doi: 10.1128/MCB.21.8.2906-2917.2001
|
[61] |
Ruggeri JM, Franco-Barraza J, Sohail A, et al. Discoidin Domain Receptor 1 (DDR1) Is Necessary for Tissue Homeostasis in Pancreatic Injury and Pathogenesis of Pancreatic Ductal Adenocarcinoma[J]. Am J Pathol, 2020, 190(8): 1735-1751. doi: 10.1016/j.ajpath.2020.03.020
|
[62] |
Dorison A, Dussaule J, Chatziantoniou C. The Role of Discoidin Domain Receptor 1 in Inflammation, Fibrosis and Renal Disease[J]. Nephron, 2017, 137(3): 212-220. doi: 10.1159/000479119
|
[63] |
Rauner G, Jin DX, Miller DH, et al. Breast tissue regeneration is driven by cell-matrix interactions coordinating multi-lineage stem cell differentiation through DDR1[J]. Nat Commun, 2021, 12(1): 7116. doi: 10.1038/s41467-021-27401-6
|
[64] |
Zhang X, Hu Y, Pan Y, et al. DDR1 promotes hepatocellular carcinoma metastasis through recruiting PSD4 to ARF6[J]. Oncogene, 2022, 41(12): 1821-1834. doi: 10.1038/s41388-022-02212-1
|
[65] |
Pan Y, Han M, Zhang X, et al. Discoidin domain receptor 1 promotes hepatocellular carcinoma progression through modulation of SLC1A5 and the mTORC1 signaling pathway[J]. Cell Oncol, 2022, 45(1): 163-178. doi: 10.1007/s13402-022-00659-8
|
[66] |
Hidalgo-Carcedo C, Hooper S, Chaudhry SI, et al. Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6[J]. Nat Cell Biol, 2011, 13(1): 49-59. doi: 10.1038/ncb2133
|
[67] |
Valencia K, Ormazábal C, Zandueta C, et al. Inhibition of Collagen Receptor Discoidin Domain Receptor-1 (DDR1) Reduces Cell Survival, Homing, and Colonization in Lung Cancer Bone Metastasis[J]. Clin Cancer Res, 2012, 18(4): 969-980. doi: 10.1158/1078-0432.CCR-11-1686
|
[68] |
Sun X, Wu B, Chiang HC, et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion[J]. Nature, 2021, 599(7886): 673-678. doi: 10.1038/s41586-021-04057-2
|
[69] |
Berestjuk I, Lecacheur M, Carminati A, et al. Targeting Discoidin Domain Receptors DDR1 and DDR2 overcomes matrix‐mediated tumor cell adaptation and tolerance to BRAF‐targeted therapy in melanoma[J]. EMBO Mol Med, 2022, 14(2): e11814. doi: 10.15252/emmm.201911814
|
[70] |
Nokin MJ, Darbo E, Travert C, et al. Inhibition of DDR1 enhances in vivo chemosensitivity in KRAS-mutant lung adenocarcinoma[J]. JCI Insight, 2020, 5(15): e137869. doi: 10.1172/jci.insight.137869
|
[71] |
Ye L, Pu C, Tang J, et al. Transmembrane-4 L-six family member-1 (TM4SF1) promotes non-small cell lung cancer proliferation, invasion and chemo-resistance through regulating the DDR1/Akt/ERK-mTOR axis[J]. Respir Res, 2019, 20(1): 106. doi: 10.1186/s12931-019-1071-5
|