Citation: | CHEN Kang, CHEN Ying, NIU Zongxin, KANG Li, ZULIPEYA·Aibaidula. Effect of SMAC Gene on Sensitivity of Lung Adenocarcinoma Cells to Paclitaxel and Cell Viability Based on caspase-3/Bcl-2/Bax Signaling Pathway[J]. Cancer Research on Prevention and Treatment, 2023, 50(4): 357-363. DOI: 10.3971/j.issn.1000-8578.2023.22.1114 |
To investigate the effect of the SMAC gene on paclitaxel sensitivity and cellular activity in lung adenocarcinoma cells based on the caspase-3/Bcl-2/Bax signaling pathway.
A paclitaxel-resistant cell line A549/Taxol was established for lung adenocarcinoma, and the cells were divided into four following groups: pcDNA-NC (transfected with pcDNA-NC blank vector), pcDNA-SMAC (transfected with pcDNA-SMAC vector), siRNA-NC (transfected with siRNA-NC empty virus vector), and siRNA-SMAC groups (transfected with siRNA-SMAC lentiviral vector). The SMAC mRNA expression in cells was detected by qRT-PCR; cell sensitivity was detected by MTT; cell proliferation ability was detected by cloning assay; cell invasion ability was detected by Transwell; apoptosis ability was detected by flow cytometry assay; and caspase-3, Bcl-2 and Bax protein expression in cells were detected by Western blot analysis.
The SMAC mRNA expression was significantly lower in A549 cells compared with BEAS-2B cells (P < 0.05). The SMAC mRNA expression was significantly higher in the pcDNA-SMAC group than that in the pcDNA-NC group cells (P < 0.05). The SMAC mRNA expression was significantly lower in the cells of the siRNA-SMAC group (P < 0.05) than that in the siRNA-NC group. The SMAC mRNA expression was significantly lower in the cells of the siRNA-SMAC group (P < 0.05) than in the siRNA-NC group. Compared with the pcDNA-NC group, the cell IC50, cell clone number, cell invasion ability, and Bcl-2 protein and Bcl-2/Bax ratio were significantly lower in the pcDNA-SMAC group, the cell resistance index reversal was 2.51-fold, and the apoptosis ability and caspase-3, as well as Bax protein expression, were significantly higher (P < 0.05). Compared with the siRNA-NC group, cell IC50, cell clone number, cell invasion ability, and Bcl-2 protein and Bcl-2/Bax ratio were significantly higher in the siRNA-SMAC group, and apoptosis ability and caspase-3 and Bax protein expression were significantly lower (P < 0.05).
High expression of SMAC increases paclitaxel sensitivity, inhibits cell growth and invasion, promotes apoptosis in lung adenocarcinoma cells, and has a regulatory effect on the caspase-3/Bcl-2/Bax signaling pathway.
Competing interests: The authors declare that they have no competing interests.
[1] |
Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer[J]. Nat Med, 2021, 27(8): 1345-1356. doi: 10.1038/s41591-021-01450-2
|
[2] |
Chaft JE, Rimner A, Weder W, et al. Evolution of systemic therapy for stagesⅠ-Ⅲ non-metastatic non-small-cell lung cancer[J]. Nat Rev Clin Oncol, 2021, 18(9): 547-557. doi: 10.1038/s41571-021-00501-4
|
[3] |
赵松, 王丽丽, 欧阳明玥, 等. 间充质干细胞条件培养基对多西紫杉醇诱导多倍体肺癌细胞衰老表型的研究[J]. 中国临床实用医学, 2022, 13(2): 23-30.
Zhao S, Wang LL, Ouyang MY, et al. Effects of mesenchymal stem cells-conditioned medium on senescence phenotype of polyploid lung cancer cells induced by docetaxel[J]. Zhongguo Lin Chuang Shi Yong Yi Xue, 2022, 13(2): 23-30.
|
[4] |
Ahmad I, Irfan S, Beg MMA, et al. The SMAC mimetic AT-101 exhibits anti-tumor and anti-metastasis activity in lung adenocarcinoma cells by the IAPs/caspase-dependent apoptosis and p65-NFκB cross-talk[J]. Iran J Basic Med Sci, 2021, 24(7): 969-977.
|
[5] |
Pandey SK, Paul A, Shteinfer-Kuzmine A, et al. SMAC/Diablo controls proliferation of cancer cells by regulating phosphatidylethanolamine synthesis[J]. Mol Oncol, 2021, 15(11): 3037-3061. doi: 10.1002/1878-0261.12959
|
[6] |
Jiang N, Zhang WQ, Dong H, et al. SMAC exhibits anti-tumor effects in ECA109 cells by regulating expression of inhibitor of apoptosis protein family[J]. World J Clin Cases, 2021, 9(19): 5019-5027. doi: 10.12998/wjcc.v9.i19.5019
|
[7] |
Cerna D, Lim B, Adelabu Y, et al. SMAC Mimetic/IAP Inhibitor Birinapant Enhances Radiosensitivity of Glioblastoma Multiforme[J]. Radiat Res, 2021, 195(6): 549-560.
|
[8] |
裴彩霞, 汪晓敏, 吴永灿, 等. 桔梗皂苷D通过Bax/Bcl-2/Caspase-3信号通路抑制细胞凋亡保护急性肺损伤的机制研究[J]. 世界科学技术-中医药现代化, 2021, 23(10): 3551-3558. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202110013.htm
Pei CX, Wang XM, Wu YC, et al. Studies on Mechanism of Platycodin D Inhibiting Apoptosis and Protecting Acute Lung Injury Via Bax/bcl-2/caspase-3 Signaling Pathway[J]. Shi Jie Ke Xue Ji Shu-Zhong Yi Yao Xian Dai Hua, 2021, 23(10): 3551-3558. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202110013.htm
|
[9] |
钟大仓, 陈超, 李桐, 等. 胡椒碱诱导人胰腺癌PANC-1细胞凋亡的Caspase 3/Bax/Bcl-2信号通路机制研究[J]. 中国现代应用药学, 2020, 37(14): 1687-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD202014004.htm
Zhong DC, Chen C, Li T, et al. Study on the Caspase 3/Bax/Bcl-2 Signal Pathway Mechanism of Induction Apoptosis Effect of Piperine in Human Pancreatic Cancer PANC-1 Cell[J]. Zhongguo Xian Dai Ying Yong Yao Xue, 2020, 37(14): 1687-1691. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD202014004.htm
|
[10] |
张勇, 黄念, 李秋波, 等. 阿帕替尼通过ABCB1逆转非小细胞肺癌紫杉醇耐药的机制[J]. 中华肿瘤防治杂志, 2021, 28(19): 1448-1455. doi: 10.16073/j.cnki.cjcpt.2021.19.04
Zhang Y, Huang N, Li QB, et al. Mechanism of ABCB1 reversing paclitaxel resistance in treatment of non-small cell lung cancer with Apatinib[J] Zhonghua Zhong Liu Fang Zhi Za Zhi, 2021, 28(19): 1448-1455. doi: 10.16073/j.cnki.cjcpt.2021.19.04
|
[11] |
张华丽, 黄英莉. 小白菊内酯对紫杉醇耐药非小细胞肺癌的细胞毒性及对HDACs抑制潜力[J]. 沈阳药科大学学报, 2021, 38(6): 613-621. doi: 10.14066/j.cnki.cn21-1349/r.2019.1148
Zhang HL, Huang YL. Cytotoxicity of permethrin on paclitaxel-resistant NSCLC cells and potential for inhibition of HDACs[J]. Shenyang Yao Ke Da Xue Xue Bao, 2021, 38(6): 613-621. doi: 10.14066/j.cnki.cn21-1349/r.2019.1148
|
[12] |
Li BT, Smit EF, Goto Y, et al. Trastuzumab deruxtecan in HER2-mutant non–small-cell lung cancer[J]. N Eng J Med, 2022, 386(3): 241-251. doi: 10.1056/NEJMoa2112431
|
[13] |
张汀荣, 陆向东, 张瑶, 等. CTEN通过TGF-β1促进非小细胞肺癌细胞紫杉醇耐药的作用及机制研究[J]. 现代肿瘤医学, 2021, 29(12): 2035-2040. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZL202112004.htm
Zhang TR, Lu XD, Zhang Y, et al. CTEN induces paclitaxel resistance in non-small cell lung cancer cells via TGF-β1[J]. Xian Dai Zhong Liu Yi Xue, 2021, 29(12): 2035-2040. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZL202112004.htm
|
[14] |
Yang Y, Wang Y, Che X, et al. Integrin α5 promotes migration and invasion through the FAK/STAT3/AKT signaling pathway in icotinib-resistant non-small cell lung cancer cells[J]. Oncol Lett, 2021, 22(1): 556. doi: 10.3892/ol.2021.12817
|
[15] |
刘海君, 赵俊刚. 长链非编码RNA LINC00520调控IGF2BP1介导肺腺癌细胞对紫杉醇化疗耐药的影响[J]. 重庆医学, 2021, 50(8): 1266-1271. doi: 10.3969/j.issn.1671-8348.2021.08.002
Liu HJ, Zhao JG. LINC00520 mediates drug resistance of lung adenocarcinoma cells to paclitaxel chemotherapy by regulating IGF2BP1[J]. Chongqing Yi Xue, 2021, 50(8): 1266-1271. doi: 10.3969/j.issn.1671-8348.2021.08.002
|
[16] |
Zhou D, Xia Z, Xie M, et al. Exosomal long non-coding RNA SOX2 overlapping transcript enhances the resistance to EGFR-TKIs in non-small cell lung cancer cell line H1975[J]. Hum Cell, 2021, 34(5): 1478-1489. doi: 10.1007/s13577-021-00572-6
|
[17] |
Ma CS, Lv QM, Zhang KR, et al. NRF2-GPX4/SOD2 axis imparts resistance to EGFR-tyrosine kinase inhibitors in non-small-cell lung cancer cells[J]. Acta Pharmacol Sin, 2021, 42(4): 613-623.
|
[18] |
王晗, 陈昊, 王博文, 等. 紫檀芪提高肺癌化疗耐药细胞对紫杉醇敏感性的研究[J]. 宁夏医科大学学报, 2020, 42(2): 135-139, 144. https://www.cnki.com.cn/Article/CJFDTOTAL-XNXY202002008.htm
Wang H, Chen H, Wang BW, et al. Pterostilbene Increases the Sensitivity of Chemotherapy Resistant Lung Cancer Cells to Paclitaxel[J]. Ningxia Yi Ke Da Xue Xue Bao, 2020, 42(2): 135-139, 144. https://www.cnki.com.cn/Article/CJFDTOTAL-XNXY202002008.htm
|
[19] |
Paul A, Krelin Y, Arif T, et al. A new role for the mitochondrial pro-apoptotic protein SMAC/Diablo in phospholipid synthesis associated with tumorigenesis[J]. Mol Ther, 2018, 26(3): 680-694.
|
[20] |
Guttà C, Rahman A, Aura C, et al. Low expression of pro-apoptotic proteins Bax, Bak and Smac indicates prolonged progression-free survival in chemotherapy-treated metastatic melanoma[J]. Cell Death Dis, 2020, 11(2): 124.
|
[21] |
赵玉芳, 金敬顺, 赵玉玲. Smac蛋白与肺癌的研究进展[J]. 广西医科大学学报, 2015, 32(1): 152-154. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYD201501057.htm
Zhao YF, Jin JS, Zhao YL. Research progress of Smac protein and lung cancer[J]. Guangxi Yi Ke Da Xue Xue Bao, 2015, 32(1): 152-154. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYD201501057.htm
|
[22] |
王希方, 秦思达, 刘屹, 等. Smac类似物BV6泛素化对肺癌细胞A549迁移的影响[J]. 中国临床研究, 2019, 32(11): 1462-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCK201911002.htm
Wang XF, Qin SD, Liu Y, et al. Effect of Smac analogue BV6 ubiquitination on A549 migration in lung cancer cells[J]. Zhongguo Lin Chuang Yan Jiu, 2019, 32(11): 1462-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCK201911002.htm
|
[23] |
Jiang N, Zhang WQ, Dong H, et al. SMAC exhibits anti-tumor effects in ECA109 cells by regulating expression of inhibitor of apoptosis protein family[J]. World J Clin Cases, 2021, 9(19): 5019-5027.
|
[24] |
Qiu W, Liu H, Sebastini A, et al. An apoptosis-independent role of SMAC in tumor suppression[J]. Oncogene, 2013, 32(19): 2380-2389.
|
[25] |
曾辉, 黄绪群, 蔡煜, 等. RNA干扰敲除Smac基因的表达促进人肺癌细胞的生长及增强顺铂耐药性[J]. 中华临床医师杂志(电子版), 2012, 6(11): 2895-2899. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYD201211014.htm
Zeng H, Huang XQ, Cai Y, et al. Knockdown of Smac expression by RNAi enhances growth and cisplatin resistance of human lung cancer cells[J]. Zhonghua Lin Chuang Yi Shi Za Zhi (Dian Zi Ban), 2012, 6(11): 2895-2899. https://www.cnki.com.cn/Article/CJFDTOTAL-ZLYD201211014.htm
|
[26] |
李全志, 刘志强, 赵玉霞, 等. 榄香烯对人肺癌A549细胞系耐顺铂细胞株多药耐药的改善作用及机制研究[J]. 浙江中医药大学学报, 2021, 45(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-BHON202101003.htm
Li QZ, Liu ZQ, Zhao YX, et al. Study on the Improvement Effect and Mechanism of Elemene on Multidrug Resistance of Eisplatin-resistant Human Lung Cancer A549 Cell Line[J]. Zhejiang Zhong Yi Yao Da Xue Xue Bao, 2021, 45(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-BHON202101003.htm
|
[27] |
Miao R, Xu X, Wang Z, et al. Synergistic effect of nutlin-3 combined with aspirin in hepatocellular carcinoma HepG2 cells through activation of Bcl-2/Bax signaling pathway[J]. Mol Med Rep, 2018, 17(3): 3735-3743.
|
[28] |
李伟宏, 田莉, 刘俊保. 莪术油对人子宫内膜癌HEC-1-B细胞增殖、凋亡及Caspase-3、Bax、Bcl-2蛋白表达的影响[J]. 河南中医, 2021, 41(3): 384-387. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZY202103016.htm
Li WH, Tian L, Liu JB. The Effects of Zedoary Turmeric Oil on Proliferation and Apoptosis and Expressions of Caspase-3 and Bax and Bcl-2 in HEC-1-B[J]. Henan Zhong Yi, 2021, 41(3): 384-387. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZY202103016.htm
|
[29] |
潘飞豹, 柯莉, 蒋丝丽, 等. 姜黄素通过调节Bcl-2/Bax/Caspase-3信号通路活性保护脑出血大鼠神经细胞的实验研究[J]. 中西医结合心脑血管病杂志, 2021, 19(22): 3897-3902. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYY202122012.htm
Pan FB, Ke L, Jiang SL, et al. Curcumin protects neurons in rats with intracerebral hemorrhage by regulating the activity of Bcl-2/Bax/Caspase-3 signal pathway[J]. Zhong Xi Yi Jie He Xin Nao Xue Guan Za Zhi, 2021, 19(22): 3897-3902. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYY202122012.htm
|
[30] |
陈康, 苟安栓, 朱佳, 等. Smac调控Caspase-3对耐药肺腺癌细胞株生物活性及相关信号的研究[J]. 现代生物医学进展, 2022, 22(21): 4027-4034.
Chen K, Gou AS, Zhu J, et al. Study on the Biological Activity and Related Signals of Caspase-3 Regulated by Smac in Drug Resistant Lung Adenocarcinoma Cell Lines[J]. Xian Dai Sheng Wu Yi Xue Jin Zhan, 2022, 22(21): 4027-4034.
|