Citation: | ZHANG Wenqing, WU Jing, XIE Di, SHI Xuecong, HU Hankun. Review of Development of Emerging Clinical Antitumor Therapeutics[J]. Cancer Research on Prevention and Treatment, 2022, 49(3): 176-181. DOI: 10.3971/j.issn.1000-8578.2022.21.1034 |
With the continuous progress of tumor treatment methods in recent years, more and more emerging antitumor drugs have been approved to market and put into clinical use. In addition, some treatments that are in clinical trials such as gene therapy are also continuously making new breakthroughs. In this review, we mainly give a brief introduction to the novel antineoplastic therapies that have been clinically used in recent years, as well as the ones with remarkable efficacy and are expected to be approved for marketing.
Competing interests: The authors declare that they have no competing interests.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
|
[2] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. doi: 10.3322/caac.21654
|
[3] |
Bhullar KS, Lagarón NO, Mcgowan EM, et al. Kinase-targeted cancer therapies: progress, challenges and future directions[J]. Mol Cancer, 2018, 17(1): 48. doi: 10.1186/s12943-018-0804-2
|
[4] |
Kannaiyan R, Mahadevan D. A comprehensive review of protein kinase inhibitors for cancer therapy[J]. Expert Rev Anticancer Ther, 2018, 18(12): 1249-1270. doi: 10.1080/14737140.2018.1527688
|
[5] |
王丽娟, 刘家熙. 表观遗传及表观遗传学概述[J]. 生物学教学, 2017, 42(1): 2-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJX201701001.htm
Wang LJ, Liu JX. Overview of epigenetics and epigenetics[J]. Sheng Wu Xue Jiao Xue, 2017, 42(1): 2-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SWJX201701001.htm
|
[6] |
Bates SE. Epigenetic Therapies for Cancer[J]. N Engl J Med, 2020, 383(7): 650-663. doi: 10.1056/NEJMra1805035
|
[7] |
Carusillo A, Mussolino C. DNA Damage: From Threat to Treatment[J]. Cells, 2020, 9(7): 1665. doi: 10.3390/cells9071665
|
[8] |
Engbrecht M, Mangerich A. The Nucleolus and PARP1 in Cancer Biology[J]. Cancers (Basel), 2020, 12(7): 1813. doi: 10.3390/cancers12071813
|
[9] |
Park J, Cho J, Song EJ. Ubiquitin-proteasome system (UPS) as a target for anticancer treatment[J]. Arch Pharm Res, 2020, 43(11): 1144-1161. doi: 10.1007/s12272-020-01281-8
|
[10] |
Adams J, Kauffman M. Development of the proteasome inhihitor Veleade (Bortezomib)[J]. Cancer Investigation, 2004, 22(2): 304-311. doi: 10.1081/CNV-120030218
|
[11] |
Khan S, He Y, Zhang X. PROteolysis TArgeting Chimeras (PROTACs) as emerging anticancer therapeutics[J]. Oncogene, 2020, 39(26): 4909-4924. doi: 10.1038/s41388-020-1336-y
|
[12] |
Zahavi D, Weiner L. Monoclonal Antibodies in Cancer Therapy[J]. Antibodies (Basel), 2020, 9(3): 34. doi: 10.3390/antib9030034
|
[13] |
Strebhardt K, Ullrich A. Paul Ehrlich's magic bullet concept: 100 years of progress[J]. Nat Rev Cancer, 2008, 8(6): 473-480. doi: 10.1038/nrc2394
|
[14] |
Acheampong DO. Bispecific Antibody (bsAb) Construct Formats and their Application in Cancer Therapy[J]. Protein Pept Lett, 2019, 26(7): 479-493. doi: 10.2174/0929866526666190311163820
|
[15] |
Wei G, Zhang H, Zhao H, et al. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy[J]. Cancer Lett, 2021, 511: 68-76. doi: 10.1016/j.canlet.2021.04.021
|
[16] |
Hosen N. CAR T cell therapy[J]. Immunol Med, 2021, 44(2): 69-73. doi: 10.1080/25785826.2020.1796063
|
[17] |
Song Q, Zhang CD, Wu XH. Therapeutic cancer vaccines: From initial findings to prospects[J]. Immunology Lett, 2018, 196: 11-21. doi: 10.1016/j.imlet.2018.01.011
|
[18] |
Folkman J. Tumor angiogenesis: therapeutic implications[J]. N Engl J Med, 1971, 285(21): 1182-1186. doi: 10.1056/NEJM197111182852108
|
[19] |
曹义海. 血管生成在疾病治疗中的应用与展望[J]. 山东大学学报(医学版), 2021, 59(9): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYB202109002.htm
Cao YH. Targeting angiogenesis for disease therapy[J]. Shandong Da Xue Xue Bao(Yi Xue Ban), 2021, 59(9): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SDYB202109002.htm
|
[20] |
冯青燕, 徐金升, 白亚玲. 抗血管生成靶向药物相关性肾脏损伤的研究进展[J]. 肿瘤防治研究, 2021, 48(4): 424-428. doi: 10.3971/j.issn.1000-8578.2021.20.0807
Feng QY, Xu JS, Bai YL. Progress of Antiangiogenic Drug-induced Renal Injury[J]. Zhong Liu Fang Zhi Yan Jiu, 2021, 48(4): 424-428. doi: 10.3971/j.issn.1000-8578.2021.20.0807
|
[21] |
刘娟娟, 李丹阳, 孙正阳, 等. 抗肿瘤多肽研究进展[J]. 济宁医学院学报, 2017, 40(4): 240-244. doi: 10.3969/j.issn.1000-9760.2017.04.003
Liu JJ, Li DY, Sun ZY, et al. Research progress of antitumor peptides[J]. Jining Yi Xue Yuan Xue Bao, 2017, 40(4): 240-244. doi: 10.3969/j.issn.1000-9760.2017.04.003
|
[22] |
Boohaker RJ, Lee MW, Vishnubhotla P, et al. The Use of Therapeutic Peptides to Target and to Kill Cancer Cells[J]. Curr Med Chem, 2012, 19(22): 3794-3804 doi: 10.2174/092986712801661004
|
[23] |
Yaghoubi A, Khazaei M, Avan A. p28 Bacterial Peptide, as an Anticancer Agent[J]. Front Oncol, 2020, 10: 1303. doi: 10.3389/fonc.2020.01303
|
[24] |
翟宇, 王洪颖, 刘旭, 等. 多肽抗肿瘤机制及应用的研究进展[J]. 肿瘤药学, 2021, 11(2): 133-139. doi: 10.3969/j.issn.2095-1264.2021.02.02
Zhai Y, Wang HY, Liu X, et al. Research Progress on Anti-tumor Mechanism and Application of Peptides[J]. Zhong Liu Yao Xue, 2021, 11(2): 133-139. doi: 10.3969/j.issn.2095-1264.2021.02.02
|
[25] |
Rothe C, Skerra A. Anticalin(®) Proteins as Therapeutic Agents in Human Diseases[J]. BioDrugs, 2018, 32(3): 233-243. doi: 10.1007/s40259-018-0278-1
|
[26] |
Gille H, Hülsmeyer M, Trentmann S, et al. Functional characterization of a VEGF-A-targeting Anticalin, prototype of a novel therapeutic human protein class[J]. Angiogenesis, 2016, 19(1): 79-94. doi: 10.1007/s10456-015-9490-5
|
[27] |
Bennett CF. Therapeutic Antisense Oligonucleotides Are Coming of Age[J]. Annu Rev Med, 2019, 70: 307-321. doi: 10.1146/annurev-med-041217-010829
|
[28] |
Tian Z, Liang G, Cui K. Insight Into the Prospects for RNAi Therapy of Cancer[J]. Front Pharmacol, 2021, 12: 644718. doi: 10.3389/fphar.2021.644718
|
[29] |
Xiong H, Veedu RN, Diermeier SD. Recent Advances in Oligonucleotide Therapeutics in Oncology[J]. Int J Mol Sci, 2021, 22(7): 3295. doi: 10.3390/ijms22073295
|
[30] |
Weng Y, Li C, Yang T. The challenge and prospect of mRNA therapeutics landscape[J]. Biotechnol Adv, 2020, 40: 107534. doi: 10.1016/j.biotechadv.2020.107534
|
[31] |
邱志超, 李卓霏, 石宏. 基因编辑技术及其在疾病治疗中的研究进展和应用前景[J]. 昆明理工大学学报(自然科学版), 2021, 46(5): 100-109. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG202105014.htm
Qiu ZC, Li ZF, Shi H. Gene editing technology and its research progress and application prospect in disease treatment[J]. Kunming Li Gong Da Xue Xue Bao (Zi Ran Ke Xue Ban), 2021, 46(5): 100-109. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG202105014.htm
|
[32] |
王韶嵘, 高兴春, 陈芳妮, 等. CRISPR/Cas9基因编辑技术在肿瘤研究及治疗中的应用[J]. 实用癌症杂志, 2019, 34(7): 1216-1218. doi: 10.3969/j.issn.1001-5930.2019.07.049
Wang SR, Gao XC, Chen FN, et al. Application of CRISPR/cas9 gene editing technology in tumor research and treatment[J]. Shi Yong Ai Zheng Za Zhi, 2019, 34(7): 1216-1218. doi: 10.3969/j.issn.1001-5930.2019.07.049
|
[33] |
Lu Y, Xue J, Deng T. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer[J]. Nat Med, 2020, 26(5): 732-740. doi: 10.1038/s41591-020-0840-5
|
[34] |
Lopes A, Vandermeulen G, Préat V. Cancer DNA vaccines: current preclinical and clinical developments and future perspectives[J]. J Exp Clin Cancer Res, 2019, 38(1): 146. doi: 10.1186/s13046-019-1154-7
|
[35] |
Bhuyan PK, Dallas M, Kraynyak K, et al. Durability of response to VGX-3100 treatment of HPV16/18 positive cervical HSIL[J]. Hum Vaccin Immunother, 2021, 17(5): 1288-1293. doi: 10.1080/21645515.2020.1823778
|