Citation: | FENG Qingyan, XU Jinsheng, BAI Yaling. Progress of Antiangiogenic Drug-induced Renal Injury[J]. Cancer Research on Prevention and Treatment, 2021, 48(4): 424-428. DOI: 10.3971/j.issn.1000-8578.2021.20.0807 |
With the continuous development of precision targeting medicine, antiangiogenic drugs have achieved good therapeutic effects in the treatment of advanced cancer, but renal injury and other adverse reactions often occur during the use, which reduce the quality of life of patients. This article reviews the mechanism of renal injury induced by antiangiogenic drugs and the potential relation between renal injury and prognosis.
[1] |
Denda T, Sakai D, Hamaguchi T, et al. Phase Ⅱ trial of aflibercept with FOLFIRI as a second-line treatment for Japanese patients with metastatic colorectal cancer[J]. Cancer Sci, 2019, 110(3): 1032-1043. doi: 10.1111/cas.13943
|
[2] |
Choueiri TK, Hessel C, Halabi S, et al. Cabozantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): Progression-free survival by independent review and overall survival update[J]. Eur J Cancer, 2018, 94: 115-125. doi: 10.1016/j.ejca.2018.02.012
|
[3] |
Thatcher N, Goldschmidt JH, Thomas M, et al. Efficacy and Safety of the Biosimilar ABP 215 Compared with Bevacizumab in Patients with Advanced Nonsquamous Non-small Cell Lung Cancer (MAPLE): A Randomized, Double-blind, Phase Ⅲ Study[J]. Clin Cancer Res, 2019, 25(7): 2088-2095. doi: 10.1158/1078-0432.CCR-18-2702
|
[4] |
Teleanu RI, Chircov C, Grumezescu AM, et al. Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment[J]. J Clin Med, 2019, 9(1): 84. doi: 10.3390/jcm9010084
|
[5] |
Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis[J]. Rom J Morphol Embryol, 2018, 59(2): 455-467. http://www.ncbi.nlm.nih.gov/pubmed/30173249
|
[6] |
Garcia J, Hurwitz HI, Sandler AB, et al. Bevacizumab (AvastinⓇ) in cancer treatment: A review of 15 years of clinical experience and future outlook[J]. Cancer Treat Rev, 2020, 86: 102017. doi: 10.1016/j.ctrv.2020.102017
|
[7] |
Seto T, Azuma K, Yamanaka T, et al. Randomized Phase Ⅲ Study of Continuation Maintenance Bevacizumab With or Without Pemetrexed in Advanced Nonsquamous Non-Small-Cell Lung Cancer: COMPASS (WJOG5610L)[J]. J Clin Oncol, 2020, 38(8): 793-803. doi: 10.1200/JCO.19.01494
|
[8] |
Pfisterer J, Shannon CM, Baumann K, et al. Bevacizumab and platinum-based combinations for recurrent ovarian cancer: a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2020, 21(5): 699-709. doi: 10.1016/S1470-2045(20)30142-X
|
[9] |
Lafayette RA, McCall B, Li N, et al. Incidence and relevance of proteinuria in bevacizumab-treated patients: pooled analysis from randomized controlled trials[J]. Am J Nephrol, 2014, 40(1): 75-83. doi: 10.1159/000365156
|
[10] |
Pinto C, Antonuzzo L, Porcu L, et al. Efficacy and Safety of Bevacizumab Combined With Fluoropyrimidine Monotherapy for Unfit or Older Patients With Metastatic Colorectal Cancer: A Systematic Review and Meta-Analysis[J]. Clin Colorectal Cancer, 2017, 16(2): e61-e72. doi: 10.1016/j.clcc.2016.08.006
|
[11] |
Taylor SE, Chu T, Elvin JA, et al. Phase Ⅱ study of everolimus and bevacizumab in recurrent ovarian, peritoneal, and fallopian tube cancer[J]. Gynecol Oncol, 2020, 156(1): 32-37. doi: 10.1016/j.ygyno.2019.10.029
|
[12] |
Li J, Xu R, Qin S, et al. Aflibercept plus FOLFIRI in Asian patients with pretreated metastatic colorectal cancer: a randomized Phase Ⅲ study[J]. Future Oncol, 2018, 14(20): 2031-2044. doi: 10.2217/fon-2017-0669
|
[13] |
Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma[J]. N Engl J Med, 2008, 359(4): 378-390. doi: 10.1056/NEJMoa0708857
|
[14] |
Marisi G, Cucchetti A, Ulivi P, et al. Ten years of sorafenib in hepatocellular carcinoma: Are there any predictive and/or prognostic markers?[J]. World J Gastroenterol, 2018, 24(36): 4152-4163. doi: 10.3748/wjg.v24.i36.4152
|
[15] |
Abdel-Rahman O, Lamarca A. Development of sorafenib-related side effects in patients diagnosed with advanced hepatocellular carcinoma treated with sorafenib: a systematic-review and meta-analysis of the impact on survival[J]. Expert Rev Gastroenterol Hepatol, 2017, 11(1): 75-83. doi: 10.1080/17474124.2017.1264874
|
[16] |
Kudo M, Finn RS, Qin S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. Lancet, 2018, 391(10126): 1163-1173. doi: 10.1016/S0140-6736(18)30207-1
|
[17] |
Nassif E, Thibault C, Vano Y, et al. Sunitinib in kidney cancer: 10 years of experience and development[J]. Expert Rev Anticancer Ther, 2017, 17(2): 129-142. doi: 10.1080/14737140.2017.1272415
|
[18] |
Méjean A, Ravaud A, Thezenas S, et al. Sunitinib Alone or after Nephrectomy in Metastatic Renal-Cell Carcinoma[J]. N Engl J Med, 2018 Aug 2; 379(5): 417-427.
|
[19] |
Gross-Goupil M, Kwon TG, Eto M, et al. Axitinib versus placebo as an adjuvant treatment of renal cell carcinoma: results from the phase Ⅲ, randomized ATLAS trial[J]. Ann Oncol, 2018, 29(12): 2371-2378. doi: 10.1093/annonc/mdy454
|
[20] |
Rini BI, Plimack ER, Stus V, et al. Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma[J]. N Engl J Med, 2019, 380(12): 1116-1127. doi: 10.1056/NEJMoa1816714
|
[21] |
Motzer RJ, Penkov K, Haanen J, et al. Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma[J]. N Engl J Med, 2019, 380(12): 1103-1115. doi: 10.1056/NEJMoa1816047
|
[22] |
Leslie I, Boos LA, Larkin J, et al. Avelumab and axitinib in the treatment of renal cell carcinoma: safety and efficacy[J]. Expert Rev Anticancer Ther, 2020, 20(5): 343-354. doi: 10.1080/14737140.2020.1756780
|
[23] |
Choueiri TK, Escudier B, Powles T, et al. Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2016, 17(7): 917-927. doi: 10.1016/S1470-2045(16)30107-3
|
[24] |
Schlumberger M, Elisei R, Müller S, et al. Overall survival analysis of EXAM, a phase Ⅲ trial of cabozantinib in patients with radiographically progressive medullary thyroid carcinoma[J]. Ann Oncol, 2017, 28(11): 2813-2819. doi: 10.1093/annonc/mdx479
|
[25] |
Müller-Deile J, Worthmann K, Saleem M, et al. The balance of autocrine VEGF-A and VEGF-C determines podocyte survival[J]. Am J Physiol Renal Physiol, 2009, 297(6): F1656-F1667. doi: 10.1152/ajprenal.00275.2009
|
[26] |
New LA, Martin CE, Scott RP, et al. Nephrin Tyrosine Phosphorylation Is Required to Stabilize and Restore Podocyte Foot Process Architecture[J]. J Am Soc Nephrol, 2016, 27(8): 2422-2435. doi: 10.1681/ASN.2015091048
|
[27] |
Wang H, Yue Z, Wu J, et al. The Accumulation of VEGFA in the Glomerular Basement Membrane and Its Relationship with Podocyte Injury and Proteinuria in Alport Syndrome[J]. PLoS One, 2015, 10(8): e0135648. doi: 10.1371/journal.pone.0135648
|
[28] |
Eremina V, Jefferson JA, Kowalewska J, et al. VEGF inhibition and renal thrombotic microangiopathy[J]. N Engl J Med, 2008, 358(11): 1129-1136. doi: 10.1056/NEJMoa0707330
|
[29] |
Maruyama K, Nakagawa N, Suzuki A, et al. Pazopanib-induced Endothelial Injury with Podocyte Changes[J]. Intern Med, 2018, 57(7): 987-991. doi: 10.2169/internalmedicine.9576-17
|
[30] |
Wu Q, Finley SD. Mathematical Model Predicts Effective Strategies to Inhibit VEGF-eNOS Signaling[J]. J Clin Med, 2020, 9(5): 1255. doi: 10.3390/jcm9051255
|
[31] |
Eroglu E, Saravi SSS, Sorrentino A, et al. Discordance between eNOS phosphorylation and activation revealed by multispectral imaging and chemogenetic methods[J]. Proc Natl Acad Sci U S A, 2019, 116(40): 20210-20217. doi: 10.1073/pnas.1910942116
|
[32] |
Oe Y, Fushima T, Sato E, et al. Protease-activated receptor 2 protects against VEGF inhibitor-induced glomerular endothelial and podocyte injury[J]. Sci Rep, 2019, 9(1): 2986. doi: 10.1038/s41598-019-39914-8
|
[33] |
Siragusa M, Fleming I. The eNOS signalosome and its link to endothelial dysfunction[J]. Pflugers Arch, 2016, 468(7): 1125-1137. doi: 10.1007/s00424-016-1839-0
|
[34] |
Eremina V, Quaggin SE. Biology of anti-angiogenic therapy-induced thrombotic microangiopathy[J]. Semin Nephrol, 2010, 30(6): 582-590. doi: 10.1016/j.semnephrol.2010.09.006
|
[35] |
Izzedine H, Perazella MA. Thrombotic microangiopathy, cancer, and cancer drugs[J]. Am J Kidney Dis, 2015, 66(5): 857-868. doi: 10.1053/j.ajkd.2015.02.340
|
[36] |
Izzedine H, Escudier B, Lhomme C, et al. Kidney diseases associated with anti-vascular endothelial growth factor (VEGF): an 8-year observational study at a single center[J]. Medicine (Baltimore), 2014, 93(24): 333-339. doi: 10.1097/MD.0000000000000207
|
[37] |
Pfister F, Amann K, Daniel C, et al. Characteristic morphological changes in anti-VEGF therapy-induced glomerular microangiopathy[J]. Histopathology, 2018, 73(6): 990-1001. doi: 10.1111/his.13716
|
[38] |
Carvalho B, Lopes RG, Linhares P, et al. Hypertension and proteinuria as clinical biomarkers of response to bevacizumab in glioblastoma patients[J]. J Neurooncol, 2020, 147(1): 109-116. doi: 10.1007/s11060-020-03404-z
|
[39] |
Khoja L, Kumaran G, Zee YK, et al. Evaluation of hypertension and proteinuria as markers of efficacy in antiangiogenic therapy for metastatic colorectal cancer[J]. J Clin Gastroenterol, 2014, 48(5): 430-434. doi: 10.1097/MCG.0b013e3182a8804c
|
[40] |
Estrada CC, Maldonado A, Mallipattu SK. Therapeutic Inhibition of VEGF Signaling and Associated Nephrotoxicities[J]. J Am Soc Nephrol, 2019, 30(2): 187-200. doi: 10.1681/ASN.2018080853
|
[41] |
Evans TRJ, Kudo M, Finn RS, et al. Urine protein: creatinine ratio vs. 24-hour urine protein for proteinuria management: analysis from the phase 3 REFLECT study of lenvatinib vs sorafenib in hepatocellular carcinoma[J]. Br J Cancer, 2019, 121(3): 218-221. doi: 10.1038/s41416-019-0506-6
|
[42] |
Lankhorst S, Kappers MHW, van Esch JHM, et al. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study[J]. Hypertension, 2014, 64(6): 1282-1289. doi: 10.1161/HYPERTENSIONAHA.114.04187
|
[43] |
Pandey AK, Singhi EK, Arroyo JP, et al. Mechanisms of VEGF (Vascular Endothelial Growth Factor) Inhibitor-Associated Hypertension and Vascular Disease[J]. Hypertension, 2018, 71(2): e1-e8. http://www.ncbi.nlm.nih.gov/pubmed/29279311
|