Advanced Search
NAN Yingyu, YAO Xuan, YANG Zhong. Role of Exosome in Microenvironment of Hematological Malignancies and Its Diagnostic and Therapeutic Potential[J]. Cancer Research on Prevention and Treatment, 2021, 48(1): 93-97. DOI: 10.3971/j.issn.1000-8578.2021.20.0617
Citation: NAN Yingyu, YAO Xuan, YANG Zhong. Role of Exosome in Microenvironment of Hematological Malignancies and Its Diagnostic and Therapeutic Potential[J]. Cancer Research on Prevention and Treatment, 2021, 48(1): 93-97. DOI: 10.3971/j.issn.1000-8578.2021.20.0617

Role of Exosome in Microenvironment of Hematological Malignancies and Its Diagnostic and Therapeutic Potential

More Information
  • Corresponding author:

    YANG Zhong, E-mail: zyang@tmmu.edu.cn

  • Received Date: June 04, 2020
  • Revised Date: July 23, 2020
  • Available Online: January 12, 2024
  • Exosome, a major component of extracellular vesicles, is an important media for intercellular communications under physiological conditions. In a variety of hematological malignancies researches, it has been demonstrated that exosome acts as the key carrier for interactions among the components of the bone marrow microenvironment. Due to its widespread existence and containing specific nucleic acid and protein molecules, the importance of exosome as a potential biomarker and therapeutic target/carrier in the diagnosis and treatment of hematological malignancies has been attracting more attention in the past few years.

  • [1]
    He C, Zheng S, Luo Y, et al. Exosome theranostics: biology and translational medicine[J]. Theranostics, 2018, 8(1): 237-255. doi: 10.7150/thno.21945
    [2]
    Jeppesen DK, Fenix AM, Franklin JL, et al. Reassessment ofexosomecomposition[J]. Cell, 2019, 177(2): 428-445. doi: 10.1016/j.cell.2019.02.029
    [3]
    Boyiadzis M, Whiteside TL. The emerging roles of tumor-derived exosomes in hematological malignancies[J]. Leukemia, 2017, 31(6): 1259-1268. doi: 10.1038/leu.2017.91
    [4]
    Hessvik NP, Llorente A. Current knowledge onexosomebiogenesis andrelease[J]. Cell Mol Life Sci, 2018, 75(2): 193-208. doi: 10.1007/s00018-017-2595-9
    [5]
    Gargiulo E, Paggetti J, Moussay E. Hematological malignancy-derived small extracellular vesicles and tumor microenvironment: the art of turning foes into friends[J].Cells, 2019, 8(5): 511. doi: 10.3390/cells8050511
    [6]
    Maia J, Caja S, Strano Moraes MC, et al. Exosome-based cell-cell communication in the tumor microenvironment[J]. Front Cell Dev Biol, 2018, 6: 18. doi: 10.3389/fcell.2018.00018
    [7]
    Provost P. The clinical significance ofplateletmicroparticle-associated microRNAs[J]. Clin Chem Lab Med, 2017, 55(5): 657-666.
    [8]
    Liao FL, Tan L, Liu H, et al. Hematopoietic stem cell-derived exosomes promote hematopoietic differentiation of mouse embryonic stem cells in vitro via inhibiting the miR126/Notch1 pathway[J]. Acta Pharmacol Sin, 2018, 39(4): 552-560. doi: 10.1038/aps.2017.130
    [9]
    Shen B, Liu J, Zhang F, et al. CCR2 Positive Exosome Released By Mesenchymal Stem Cells Suppresses Macrophage Functions And Alleviates Ischemia/Reperfusion-Induced Renal Injury[J]. Stem Cells Int, 2016, 2016:1240301.
    [10]
    Veerman RE, Güçlüler Akpinar G, Eldh M, et al. Immune Cell-Derived Extracellular Vesicles Functions and Therapeutic Applications[J]. Trends Mol Med, 2019, 25(5): 382-394. doi: 10.1016/j.molmed.2019.02.003
    [11]
    Anel A, Gallego-Lleyda A, de Miguel D, et al. Role ofexosomesin the regulation ofT-cellmediated immune responses and in autoimmune disease[J]. Cells, 2019, 8(2): 154. doi: 10.3390/cells8020154
    [12]
    Zhu L, Kalimuthu S, Gangadaran P, et al. Exosomes Derived From Natural Killer Cells Exert Therapeutic Effect in Melanoma[J]. Theranostics, 2017, 7(10): 2732-2745. doi: 10.7150/thno.18752
    [13]
    Gutzeit C, Nagy N, Gentile M, et al. Correction: Exosomes derived from Burkitt's lymphoma cell lines induce proliferation, differentiation, and class-switch recombination in B cells[J]. J Immunol, 2019, 203(3): 769-770. doi: 10.4049/jimmunol.1900638
    [14]
    Horiguchi H, Kobune M, Kikuchi S, et al. Extracellular vesicle miR-7977 is involved in hematopoietic dysfunction of mesenchymal stromal cells via poly(rC) binding protein 1 reduction in myeloid neoplasms[J]. Haematologica, 2016, 101(4): 437-447. doi: 10.3324/haematol.2015.134932
    [15]
    Boyiadzis M, Whiteside TL. Exosomes in acute myeloid leukemia inhibit hematopoiesis[J]. Curr Opin Hematol, 2018, 25(4): 279-284. doi: 10.1097/MOH.0000000000000439
    [16]
    Arendt BK, Walters DK, Wu X, et al. Multiple myeloma cell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation[J]. Oncotarget, 2014, 5(14): 5686-5699. doi: 10.18632/oncotarget.2159
    [17]
    Raimondo S, Saieva L, Corrado C, et al. Chronic myeloid leukemia-derived exosomes promote tumor growth through an autocrine mechanism[J]. Cell Commun Signal, 2015, 13: 8. doi: 10.1186/s12964-015-0086-x
    [18]
    Kikushige Y, Miyamoto T, Yuda J, et al. A TIM-3/Gal-9autocrinestimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression[J]. Cell Stem Cell, 2015, 17(3): 341-352. doi: 10.1016/j.stem.2015.07.011
    [19]
    Yeh YY, Ozer HG, Lehman AM, et al. Characterization of CLL exosomes reveals a distinct microRNA signature and enhanced secretion by activation of BCR signaling[J]. Blood, 2015, 125(21): 3297-3305. doi: 10.1182/blood-2014-12-618470
    [20]
    Gu H, Chen C, Hao X, et al. Sorting protein VPS33B regulates exosomal autocrine signaling to mediate hematopoiesis and leukemogenesis[J]. J Clin Investig, 2016, 126(12): 4537-4553. doi: 10.1172/JCI87105
    [21]
    Koch R, Demant M, Aung T, et al. Populational equilibrium through exosome-mediated Wnt signaling in tumor progression of diffuse large B-cell lymphoma[J]. Blood, 2014, 123(14): 2189-2198. doi: 10.1182/blood-2013-08-523886
    [22]
    Reiners KS, Topolar D, Henke A, et al. Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity[J]. Blood, 2013, 121(18): 3658-3665. doi: 10.1182/blood-2013-01-476606
    [23]
    Paggetti J, Haderk F, Seiffert M, et al. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts[J]. Blood, 2015, 126(9): 1106-1117. doi: 10.1182/blood-2014-12-618025
    [24]
    Johnson SM, Dempsey C, Chadwick A, et al. Metabolic reprogramming of bone marrow stromal cells by leukemic extracellular vesicles in acute lymphoblastic leukemia[J]. Blood, 2016, 128(3): 453-456. doi: 10.1182/blood-2015-12-688051
    [25]
    Robak P, Drozdz I, Szemraj J, et al. Drugresistancein multiple myeloma[J]. Cancer Treat Rev, 2018, 70: 199-208. doi: 10.1016/j.ctrv.2018.09.001
    [26]
    Mashouri L, Yousefi H, Aref AR, et al. Exosomes: composition, biogenesis, and mechanisms in cancer metastasis and drug resistance[J]. Mol Cancer, 2019, 18(1): 75. doi: 10.1186/s12943-019-0991-5
    [27]
    Koch R, Aung T, Vogel D, et al. Nuclear trapping through inhibition of exosomal export by indomethacin increases cytostatic efficacy of doxorubicin and pixantrone[J]. Clin Cancer Res, 2016, 22(2), 395-404. doi: 10.1158/1078-0432.CCR-15-0577
    [28]
    Wang J, Hendrix A, Hernot S, et al. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells[J]. Blood, 2014, 124(4): 555-566. doi: 10.1182/blood-2014-03-562439
    [29]
    Viola S, Traer E, Huan J, et al. Alterations in acute myeloid leukaemia bone marrow stromal cell exosome content coincide with gains in tyrosine kinase inhibitor resistance[J]. Br J Haematol, 2016, 172(6): 983-986. doi: 10.1111/bjh.13551
    [30]
    Contreras-Naranjo JC, Wu HJ, Ugaz VM. Microfluidics forexosomeisolation and analysis: enablingliquidbiopsyfor personalized medicine[J]. Lab Chip, 2017, 17(21): 3558-3577. doi: 10.1039/C7LC00592J
    [31]
    Finotti A, Allegretti M, Gasparello J, et al. Liquidbiopsyand PCR-free ultrasensitive detection systems in oncology (Review)[J]. Int J Oncol, 2018, 53(4): 1395-1434.
    [32]
    Jiang N, Pan J, Fang S, et al. Liquidbiopsy: Circulatingexosomallong noncoding RNAs in cancer[J]. Clin Chim Acta, 2019, 495: 331-337. doi: 10.1016/j.cca.2019.04.082
    [33]
    Fernandes M, Teixeira AL, Medeiros R. The opportunistic effect of exosomes on non-hodgkin lymphoma microenvironment modulation[J]. Crit Rev Oncol Hematol, 2019, 144: 102825. doi: 10.1016/j.critrevonc.2019.102825
    [34]
    Higuchi H, Yamakawa N, Imadome KI, et al. Role of exosomes as a proinflammatory mediator in the development of EBV-associated lymphoma[J]. Blood, 2018, 131(23): 2552-2567. doi: 10.1182/blood-2017-07-794529
    [35]
    Moloudizargari M, Abdollahi M, Asghari MH, et al. The emerging role of exosomes in multiple myeloma[J]. Blood Rev, 2019, 38: 100595. doi: 10.1016/j.blre.2019.100595
    [36]
    Boysen J, Nelson M, Magzoub G, et al. Dynamics of microvesicle generation in B-cell chronic lymphocytic leukemia: Implication in disease progression[J]. Leukemia, 2017, 31(2): 350-360. doi: 10.1038/leu.2016.217
    [37]
    van Eijndhoven MA, Zijlstra JM, Groenewegen NJ, et al. Plasma vesicle miRNAs for therapy response monitoring in Hodgkin lymphoma patients[J]. JCI Insight, 2016, 1(19): e89631.
    [38]
    Manier S, Liu CJ, Avet-Loiseau H, et al. Prognostic role of circulating exosomal miRNAs in multiple myeloma[J]. Blood, 2017, 129(17): 2429-2436. doi: 10.1182/blood-2016-09-742296
    [39]
    Boyiadzis M, Whiteside TL. Plasma-derived exosomes in acute myeloid leukemia for detection of minimal residual disease: Are we ready?[J]. Expert Rev Mol Diagn, 2016, 16(6): 623-629. doi: 10.1080/14737159.2016.1174578
    [40]
    Yu Y, Kou D, Liu B, et al. LncRNA MEG3 contributes to drug resistance in acute myeloid leukemia by positively regulating ALG9 through sponging miR-155[J]. Int J Lab Hematol, 2020, 42(4): 464-472. doi: 10.1111/ijlh.13225
    [41]
    Yoshizawa S, Umezu T, Saitoh Y, et al. Exosomal miRNA Signatures for Late-Onset Acute Graft-Versus-Host Disease in Allogenic Hematopoietic Stem Cell Transplantation[J]. Int J Mol Sci, 2018, 19(9): 2493. doi: 10.3390/ijms19092493
    [42]
    Luan X, Sansanaphongpricha K, Myers I, et al. Engineering exosomes as refined biological nanoplatforms for drug delivery[J]. Acta Pharmacol Sin, 2017, 38(6): 754-763. doi: 10.1038/aps.2017.12
    [43]
    Lunavat TR, Jang SC, Nilsson L, et al. RNAi delivery by exosome-mimetic nanovesicles-implications for targeting c-Myc in cancer[J]. Biomaterials, 2016, 102: 231-238. doi: 10.1016/j.biomaterials.2016.06.024
    [44]
    Peng D, Wang H, Li L, et al. miR-34c-5p Promotes eradication of acute myeloid leukemia stem cells by inducing senescence through selective RAB27B targeting to inhibit exosome shedding[J]. Leukemia, 2018, 32(5): 1180-1188. doi: 10.1038/s41375-018-0015-2
    [45]
    van Niel G, D'Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. doi: 10.1038/nrm.2017.125
    [46]
    Preciado S, Muntión S, Sánchez-Guijo F, et al. Improving hematopoietic engraftment: Potential role of mesenchymal stromal cell-derived extracellular vesicles[J]. Stem Cells, 2020, Sep 27. Online ahead of print.

Catalog

    Article views (1771) PDF downloads (775) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return