Citation: | LIU Qian, ZHONG Qian. Research Advances of Tumor-associated Macrophages in Nasopharyngeal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2021, 48(1): 71-74. DOI: 10.3971/j.issn.1000-8578.2021.20.0456 |
Tumor-associated macrophages (TAMs) are important immune cells in tumor microenvironment and are mainly divided into two subtypes: classical activated M1 macrophages and alternative activated M2 macrophages. In many kinds of cancers, TAMs are mainly M2-type and promote tumor proliferation, angiogenesis and induce tumor cell invasion and metastasis. At present, increasing evidences have been suggested that TAMs could interact with tumors cells to enhance the tumorigenesis. TAMs are expected to become the important target in clinical treatments. This article reviews the origin and function of TAMs and their roles in tumorigenesis.
[1] |
Chen YP, Chan TC, Le QT, et al. Nasopharyngeal carcinoma[J]. Lancet, 2019, 394(10192): 64-80. doi: 10.1016/S0140-6736(19)30956-0
|
[2] |
Bray F, Ferlay J, Soerijomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. doi: 10.3322/caac.21492
|
[3] |
Nesi G, Nobili S, Cai T, et al. Chronic inflammation in urothelial bladder cancer[J]. Virchows Arch, 2015, 467(6): 623-633. doi: 10.1007/s00428-015-1820-x
|
[4] |
Lee HJ, Park JM, Han YM, et al. The role of chronic inflammation in the development of gastrointestinal cancers: reviewing cancer prevention with natural anti-inflammatory intervention[J]. Expert Rev Gastroenterol Hepatol, 2015, 10(1): 129-139.
|
[5] |
Zheng B, Zhu YJ, Wang HY, et al. Gender disparity in hepatocellular carcinoma(HCC): multiple underlying mechanisms[J]. Sci China Life Sci, 2017, 60(6): 575-584. doi: 10.1007/s11427-016-9043-9
|
[6] |
Zhang Y, Kong W, Jiang J. Prevention and treatment of cancer targeting chronic inflammation: research progress, potential agents, clinical studies and mechanisms[J]. Sci China Life Sci, 2017, 60(6): 601-616. doi: 10.1007/s11427-017-9047-4
|
[7] |
Xie Z, Liu H, Geng M. Targeting sphingosine-1-phosphate signaling for cancer therapy[J]. Sci China Life Sci, 2017, 60(6): 585-600. doi: 10.1007/s11427-017-9046-6
|
[8] |
Georgescu SR, Tampa M, Mitran CI, et al. Tumour Microenvironment in Skin Carcinogenesis[J]. Adv Exp Med Biol, 2020, 1226: 123-142
|
[9] |
Larionova I, Cherdyntseva N, Liu TF, et al. Interaction of tumor-associated macrophages and cancer chemotherapy[J]. Oncoimmunology 2019, 8(7): 1596004. doi: 10.1080/2162402X.2019.1596004
|
[10] |
Liu Y, Cao XT. The origin and function of tumor-associated macrophages[J]. Cell Mol Immunol, 2015, 12(1): 1-4. doi: 10.1038/cmi.2014.83
|
[11] |
Hu QT, Myers M, Fang W, et al. Role of ALDH1A1 and HTRA2 expression in CCL2/CCR2-mediated breast cancer cell growth and invasion[J]. Biol Open, 2019, 8(7): 1-17.
|
[12] |
Kim EK, Kim YS, Milner JA, et al. Indole-3-carbinol and 3', 3'-diindolylmethane Modulate Androgen's Effect on C-C Chemokine Ligand 2 and Monocyte Attraction to Prostate Cancer Cells[J]. Cancer Prev Res, 2013, 6(6): 519-529. doi: 10.1158/1940-6207.CAPR-12-0419
|
[13] |
Huang T, Fan Q, Wang Y, et al. Schwann Cell-Derived CCL2 Promotes the Perineural Invasion of Cervical Cancer[J]. Front Oncol, 2020, 10: 19. doi: 10.3389/fonc.2020.00019
|
[14] |
Li F, Kitajima S, Kohno S, et al. Retinoblastoma Inactivation Induces a Protumoral Microenvironment via Enhanced CCL2 Secretion[J]. Cancer Res, 2019, 79(15): 3903-3915. doi: 10.1158/0008-5472.CAN-18-3604
|
[15] |
Stanley ER, Guilbert LJ, Tushinski RJ, et al. CSF-1 a mononuclear phagocyte lineage-specific hemopoietic growth factor[J]. J Cell Biochem, 1983, 21(2): 151-159. doi: 10.1002/jcb.240210206
|
[16] |
Ao JY, Zhu XD, Chai ZT, et al. Colony-Stimulating Factor 1 Receptor Blockade Inhibits Tumor Growth by Altering the Polarization of Tumor-Associated Macrophages in Hepatocellular Carcinoma[J]. Mol Cancer Ther, 2017, 16(8): 1544-1555. doi: 10.1158/1535-7163.MCT-16-0866
|
[17] |
Vitale I, Manic G, Coussens LM, et al. Macrophages and Metabolism in the Tumor Microenvironment[J]. Cell Metabolism, 2019, 30(1): 36-50. doi: 10.1016/j.cmet.2019.06.001
|
[18] |
Zhang J, Yao HM, Song G, et al. Regulation of epithelial-mesenchymal transition by tumor-associated macrophages in cancer[J]. Am J Transl Res, 2015, 7(10): 1699-1711.
|
[19] |
Solinas G, Germano G, Mantovani A, et al. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation[J]. J Leukoc Biol, 2009, 86(5): 1065-1073. doi: 10.1189/jlb.0609385
|
[20] |
Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm[J]. Nat Immunol, 2010, 11(10): 889-896. doi: 10.1038/ni.1937
|
[21] |
Van Dalen FJ, van Stevendaal MHME, Fennemann FL, et al. Molecular repolarisation of tumour-associated macrophages[J]. Molecules, 2018, 24(1): 9. doi: 10.3390/molecules24010009
|
[22] |
Chanmee T, Ontong P, Konno K, et al. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment[J]. Cancers(Basel), 2014, 6(3): 1670-1690.
|
[23] |
Rőszer T. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms[J]. Mediators Inflamm, 2015, 2015: 816460.
|
[24] |
Sica A, Mantovani A. Macrophage plasticity and polarization: In vivo veritas[J]. J Clin Invest, 2012, 122(3): 787-795. doi: 10.1172/JCI59643
|
[25] |
Hanahan D, Weinberg RA. The hallmarks of Cancer[J]. Cell, 2000, 100(1): 57-70. doi: 10.1016/S0092-8674(00)81683-9
|
[26] |
Hanahan D, Weinberg RA. Hallmarks of Cancer: The next generation[J]. Cell, 2011, 144(5): 646-674. doi: 10.1016/j.cell.2011.02.013
|
[27] |
Zhu C, Kros JM, Cheng C, et al. The contribution of tumor-associated macrophages in gliomaneo-angiogenesis and implications for anti-angiogenic strategies[J]. Neuro Oncol, 2017, 19(11): 1435-1446. doi: 10.1093/neuonc/nox081
|
[28] |
Penn CA, Yang K, Zong H, et al. Therapeutic Impact of Nanoparticle Therapy Targeting Tumor-Associated Macrophages[J]. Mol Cancer Ther, 2018, 17(1): 96-107. doi: 10.1158/1535-7163.MCT-17-0688
|
[29] |
Chen Z, Xu XH. Combining antiangiogenic therapy and radiation in nasopharyngeal carcinoma[J]. Saudi Med J, 2015, 36(6): 659-664. doi: 10.15537/smj.2015.6.11460
|
[30] |
Wang J, Li D, Cang H, et al. Crosstalk between cancer and immune cells: Role of tumor-associated macrophages in the tumor microenvironment[J]. Cancer Med, 2019, 8(10): 4709-4721. doi: 10.1002/cam4.2327
|
[31] |
Yagnik G, Rutowski MJ, Shah SS, et al. Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes[J]. Oncotarget, 2019, 10(22): 2212-2223. doi: 10.18632/oncotarget.26775
|
[32] |
Guo X, Zhao Y, Yan H, et al. Single tumor-initiating cells evade immune clearance by recruiting type Ⅱ macrophages[J]. Genes Dev, 2020, 31(3): 247-259.
|
[33] |
Liao Q, Zeng Z, Guo X, et al. LPLUNC1 suppresses IL-6-induced nasopharyngeal carcinoma cell proliferation via inhibiting the Stat3 activation[J]. Oncogene, 2013, 13(16): 2098-2109.
|
[34] |
Huang CB, Li N, Li ZX, et al. Tumour-derived Interleukin 35 promotes pancreatic ductal adenocarcinoma cell extravasation and metastasis by inducing ICAM1 expression[J]. Nat Commun, 2016, 8: 14035.
|
[35] |
Huang D, Song SJ, Wu ZZ, et al. Epstein-Barr virus-induced VEGF and GM-CSF drive nasopharyngeal carcinoma metastasis via recruitment and activation of macrophages[J]. Cancer Res, 2017, 77(13): 3581-3604.
|
[36] |
Su SC, Liu Q, Chen JQ, et al. A Positive Feedback Loop between Mesenchymal-like Cancer Cells and Macrophages Is Essential to Breast Cancer Metastasis[J]. Cancer Cell, 2014, 25(5): 605-620. doi: 10.1016/j.ccr.2014.03.021
|
[37] |
Lee JH, Cho YS, Lee Y, et al. The Chemokine Receptor CCR4 is Expressed and Associated With a Poor Prognosis in Patients With Gastric Cancer[J]. Ann Surg, 2009, 249(6): 933-941. doi: 10.1097/SLA.0b013e3181a77ccc
|
[38] |
Kong LX, Zhou YJ, Bu H, et al. Deletion of interleukin-6 in monocytes/macrophages suppresses the initiation of hepatocellular carcinoma in mice[J]. J Exp Clin Cancer Res, 2016, 35(1): 131. doi: 10.1186/s13046-016-0412-1
|
[39] |
Qian BZ, Pollard JW. Macrophage Diversity Enhances Tumor Progression and Metastasis[J]. Cell, 2010, 141(1): 39-51. doi: 10.1016/j.cell.2010.03.014
|
[40] |
Hernandez L, Smirnova T, Kedrin D, et al. The EGF/CSF-1 paracrine invasion loop can be triggered by heregulin beta1 and CXCL12[J]. Cancer Res, 2009, 69(7): 3221-3227. doi: 10.1158/0008-5472.CAN-08-2871
|
[41] |
Chen JQ, Yao YD, Gong C, et al. CCL18 from Tumor-Associated Macrophages Promotes Breast Cancer Metastasis via PITPNM3[J]. Cancer Cell, 2011, 19(4): 541-555. doi: 10.1016/j.ccr.2011.02.006
|