Citation: | RAO Xionghui, LUO Hongliang, HUANG Jun, ZHU Zhengming. Prognostic and Clinicopathological Significance of PD-L1 Expression for Colorectal Cancer: A Meta-analysis[J]. Cancer Research on Prevention and Treatment, 2019, 46(11): 1013-1021. DOI: 10.3971/j.issn.1000-8578.2019.19.0363 |
To systematically evaluate the prognostic and clinicopathological significance of PD-L1 expression in colorectal cancer(CRC) tissues by meta-analysis.
PubMed, Embase, Web of Science, Cochrane Library, CNKI and Wanfang database were used to search for the studies related to PD-L1 expression and the prognosis of CRC. The search time was until June 2018. The data of survival and clinicopathological features were extracted from eligible studies and analyzed by Stata SE12.0 software.
Eighteen studies with 5724 CRC patients were enrolled. PD-L1 expression in CRC tissues was associated with shorter overall survival (OS) (HR:1.40, 95%CI:1.02-1.93, P=0.039) and relapse-free survival (RFS) (HR:1.67, 95%CI:1.27-2.20, P=0.000), but not with disease-free survival (DFS)(P=0.933). And PD-L1 expression was significantly associated with tumor differentiation(P=0.016) and lymph node metastasis(P=0.028), but not with gender, tumor location, TNM staging, invasion depth, venous invasion, chemotherapy, MSI status or KRAS mutation. In addition, subgroup analysis showed that PD-L1 expression in tumor cells, not in tumor infiltrating immune cells (OS: P=0.991; RFS: P=0.210), was significantly associated with shorter OS(P=0.033) and RFS(P=0.001).
PD-L1 expression in CRC tissues is associated with poor prognosis. In addition, the prognostic significance of PD-L1 expression in tumor cells might be inconsistent with that in tumor-infiltrating immune cells.
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017[J]. CA Cancer J Clin, 2017, 67(1): 7-30. doi: 10.3322/caac.21387
|
[2] |
Arnold M, Sierra MS, Laversanne M, et al. Global patterns and trends in colorectal cancer incidence and mortality[J]. Gut, 2017, 66(4): 683-691. doi: 10.1136/gutjnl-2015-310912
|
[3] |
Nappi A, Berretta M, Romano C, et al. Metastatic colorectal cancer: role of target therapies and future perspectives[J]. Curr Cancer Drug Targets, 2018, 18(5): 421-429. doi: 10.2174/1568009617666170209095143
|
[4] |
Schmoll HJ, Van Cutsem E, Stein A, et al. ESMO Consensus Guidelines for management of patients with colon and rectal cancer. a personalized approach to clinical decision making[J]. Ann Oncol, 2012, 23(10): 2479-2516. doi: 10.1093/annonc/mds236
|
[5] |
Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer[J]. Ann Oncol, 2016, 27(8): 1386-1422. doi: 10.1093/annonc/mdw235
|
[6] |
Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer[J]. N Engl J Med, 2012, 366(26): 2443-2454. doi: 10.1056/NEJMoa1200690
|
[7] |
Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer[J]. J Clin Invest, 2015, 125(9): 3335-3337. doi: 10.1172/JCI83871
|
[8] |
McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy[J]. Cancer Med, 2013, 2(5): 662-673. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_3731769
|
[9] |
Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations[J]. Sci Transl Med, 2016, 8(328): 328rv4. http://cn.bing.com/academic/profile?id=b2fdedd8ce1957138821650450bbecee&encoded=0&v=paper_preview&mkt=zh-cn
|
[10] |
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy[J]. Nat Rev Cancer, 2012, 12(4): 252-264. doi: 10.1038/nrc3239
|
[11] |
Sanmamed MF, Chen L. Inducible expression of B7-H1 (PD-L1) and its selective role in tumor site immune modulation[J]. Cancer J, 2014, 20(4): 256-261. doi: 10.1097/PPO.0000000000000061
|
[12] |
Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy[J]. J Clin Oncol, 2015, 33(17): 1974-1982. doi: 10.1200/JCO.2014.59.4358
|
[13] |
Ishida Y, Agata Y, Shibahara K, et al. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death[J]. EMBO J, 1992, 11(11): 3887-3895. doi: 10.1002/j.1460-2075.1992.tb05481.x
|
[14] |
Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the Pd-1 immunoinhibitory receptor by a novel b7 family member leads to negative regulation of lymphocyte activation[J]. J Exp Med, 2000, 192(7): 1027-1034. doi: 10.1084/jem.192.7.1027
|
[15] |
Shi SJ, Wang LJ, Wang GD, et al. B7-H1 expression is associated with poor prognosis in colorectal carcinoma and regulates the proliferation and invasion of HCT116 colorectal cancer cells[J]. PLoS One, 2013, 8(10): e76012. doi: 10.1371/journal.pone.0076012
|
[16] |
Song M, Chen D, Lu B, et al. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer[J]. PLoS One, 2013, 8(6): e65821. doi: 10.1371/journal.pone.0065821
|
[17] |
Saigusa S, Toiyama Y, Tanaka K, et al. Implication of programmed cell death ligand 1 expression in tumor recurrence and prognosis in rectal cancer with neoadjuvant chemoradiotherapy[J]. Int J Clin Oncol, 2016, 21(5): 946-952. doi: 10.1007/s10147-016-0962-4
|
[18] |
Liang M, Li J, Wang D, et al. T-cell infiltration and expressions of T lymphocyte co-inhibitory B7-H1 and B7-H4 molecules among colorectal cancer patients in northeast China's Heilongjiang province[J]. Tumor Biol, 2014, 35(1): 55-60. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c99e2810b4d556aded6ce51387446563
|
[19] |
Liu R, Peng K, Yu Y, et al. Prognostic value of immunoscore and pd-l1 expression in metastatic colorectal cancer patients with different ras status after palliative operation[J]. Biomed Res Int, 2018, 2018: 5920608. http://cn.bing.com/academic/profile?id=1ef59ff18bb6ed60a24c22a545b588cb&encoded=0&v=paper_preview&mkt=zh-cn
|
[20] |
Marisa L, Svrcek M, Collura A, et al. The balance between cytotoxic T-cell lymphocytes and immune checkpoint expression in the prognosis of colon tumors[J]. J Natl Cancer Inst, 2018, 110(1). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=95db102abc993babc583d147277ee7b7
|
[21] |
Lee LH, Cavalcanti MS, Segal NH, et al. Patterns and prognostic relevance of PD-1 and PD-L1 expression in colorectal carcinoma[J]. Mod Pathol, 2016, 29(11): 1433-1442. doi: 10.1038/modpathol.2016.139
|
[22] |
Wang L, Ren F, Wang Q, et al. Significance of programmed death ligand 1 (PD-L1) immunohistochemical expression in colorectal cancer[J]. Mol Diagn Ther, 2016, 20(2): 175-181. doi: 10.1007/s40291-016-0188-1
|
[23] |
Koganemaru S, Inoshita N, Miura Y, et al. Prognostic value of programmed death-ligand 1 expression in patients with stage Ⅲcolorectal cancer[J]. Cancer Sci, 2017, 108(5): 853-858. doi: 10.1111/cas.13229
|
[24] |
Wang L, Liu Z, Fisher KW, et al. Prognostic value of programmed death ligand 1, p53, and Ki-67 in patients with advanced-stage colorectal cancer[J]. Hum Pathol, 2018, 71: 20-29. doi: 10.1016/j.humpath.2017.07.014
|
[25] |
Droeser RA, Hirt C, Viehl CT, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer[J]. Eur J Cancer, 2013, 49(9): 2233-2242. doi: 10.1016/j.ejca.2013.02.015
|
[26] |
Zhu H, Qin H, Huang Z, et al. Clinical significance of programmed death ligand-1 (PD-L1) in colorectal serrated adenocarcinoma[J]. Int J Clin Exp Pathol, 2015, 8(8): 9351-9359. http://cn.bing.com/academic/profile?id=2cbc5a282fa60ee764622e7a1ab46017&encoded=0&v=paper_preview&mkt=zh-cn
|
[27] |
Li Y, Liang L, Dai W, et al. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer[J]. Mol Cancer, 2016, 15(1): 55. doi: 10.1186/s12943-016-0539-x
|
[28] |
Lee KS, Kwak Y, Ahn S, et al. Prognostic implication of CD274 (PD-L1) protein expression in tumor-infiltrating immune cells for microsatellite unstable and stable colorectal cancer[J]. Cancer Immunol, Immunother, 2017, 66(7): 927-939. doi: 10.1007/s00262-017-1999-6
|
[29] |
Lee SJ, Jun SY, Lee IH, et al. CD274, LAG3, and IDO1 expressions in tumor-infiltrating immune cells as prognostic biomarker for patients with MSI-high colon cancer[J]. J Cancer Res Clin Oncol, 2018, 144(6): 1005-1014. doi: 10.1007/s00432-018-2620-x
|
[30] |
Hamada T, Cao Y, Qian ZR, et al. Aspirin use and colorectal cancer survival according to tumor CD274 (Programmed Cell Death 1 Ligand 1) expression status[J]. J Clin Oncol, 2017, 35(16): 1836-1844. doi: 10.1200/JCO.2016.70.7547
|
[31] |
Dunne PD, McArt DG, O'Reilly PG, et al. Immune-derived PD-L1 gene expression defines a subgroup of stage Ⅱ/Ⅲ colorectal cancer patients with favorable prognosis who may be harmed by adjuvant chemotherapy[J]. Cancer Immunol Res, 2016, 4(7): 582-591. doi: 10.1158/2326-6066.CIR-15-0302
|
[32] |
D'Alterio C, Nasti G, Polimeno M, et al. CXCR4-CXCL12-CXCR7, TLR2-TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients[J]. Oncoimmunology, 2016, 5(12): e1254313. doi: 10.1080/2162402X.2016.1254313
|
[33] |
Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey[J]. CMAJ, 2007, 176(8): 1091-1096. doi: 10.1503/cmaj.060410
|
[34] |
Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer[J]. N Engl J Med, 2012, 366(26): 2455-2465. doi: 10.1056/NEJMoa1200694
|
[35] |
Wu P, Wu D, Li L, et al. PD-L1 and Survival in Solid Tumors: A Meta-Analysis[J]. PLoS One, 2015, 10(6): e0131403. doi: 10.1371/journal.pone.0131403
|
[36] |
Xiang X, Yu PC, Long D, et al. Prognostic value of PD -L1 expression in patients with primary solid tumors[J]. Oncotarget, 2017, 9(4): 5058-5072. http://cn.bing.com/academic/profile?id=dd6a6ab9a7e367a2e2f6bb92722ea023&encoded=0&v=paper_preview&mkt=zh-cn
|
[37] |
Pyo JS, Kang G, Kim JY. Prognostic role of PD-L1 in malignant solid tumors: a meta-analysis[J]. Int J Biol Markers, 2017, 32(1): e68-e74. doi: 10.5301/jbm.5000225
|
[38] |
Dai C, Wang M, Lu J, et al. Prognostic and predictive values of PD-L1 expression in patients with digestive system cancer: a meta-analysis[J]. Onco Targets Ther, 2017, 10: 3625-3634. doi: 10.2147/OTT.S138044
|
[39] |
Llosa NJ, Cruise M, Tam A, et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints[J]. Cancer Discov, 2015, 5(1): 43-51. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c99fa12b4a85564be0a8647557a69fe9
|
[40] |
Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science, 2006, 313(5795): 1960-1964. doi: 10.1126/science.1129139
|
[41] |
Di Caro G, Marchesi F, Laghi L, et al. Immune cells: plastic players along colorectal cancer progression[J]. J Cell Mol Med, 2013, 17(9): 1088-1095. doi: 10.1111/jcmm.12117
|
[42] |
Giraldo NA, Becht E, Remark R, et al. The immune contexture of primary and metastatic human tumours[J]. Curr Opin Immunol, 2014, 27: 8-15. doi: 10.1016/j.coi.2014.01.001
|
[43] |
Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape[J]. Nat Immunol, 2002, 3(11): 991-998. doi: 10.1038/ni1102-991
|
[44] |
Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape[J]. Immunology, 2007, 121(1): 1-14. doi: 10.1111-j.1365-2567.2007.02587.x/
|