Citation: | YAN Jun, WEN Jing, LI Xisheng, MO Ligen. Research Progress on Melanoma-associated Antigen Gene-really Interesting New Gene (MAGE-RING) Ligases[J]. Cancer Research on Prevention and Treatment, 2018, 45(5): 347-352. DOI: 10.3971/j.issn.1000-8578.2018.17.1400 |
Melanoma-associated antigen gene(MAGE) is regarded as a popular target for cancer markers and immunotherapy. It was found that MAGE combined with E3-RING ubiquitin ligase to form MAGE-RING ligase complex(MRLs). MRLs are regulatory factors for ubiquitination to regulate the activity of the ligase, the specificity of the substrate and the subcellular localization. The structure, activation mechanism and transcription function of MRLs are reviewed in this article.
[1] |
Kozakova L, Vondrova L, Stejskal K, et al. The melanoma-associated antigen 1 (MAGEA1) protein stimulates the E3 ubiquitin-ligase activity of TRIM31 within a TRIM31-MAGEA1-NSE4 complex[J]. Cell Cycle, 2015, 14(6): 920-30. doi: 10.1080/15384101.2014.1000112
|
[2] |
Weon J L, Potts PR. The MAGE protein family and cancer[J]. Curr Opin Cell Biol, 2015, 37: 1-8. doi: 10.1016/j.ceb.2015.08.002
|
[3] |
Adam V, Wauters I, Vansteenkiste J. Melanoma-associated antigen-A3 vaccination in the treatment of non-small-cell lung cancer[J]. Expert Opin Biol Ther, 2014, 14(3): 365-76. doi: 10.1517/14712598.2014.880421
|
[4] |
Doyle JM, Gao J, Wang J, et al. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases[J]. Mol Cell, 2010, 39(6): 963-74. doi: 10.1016/j.molcel.2010.08.029
|
[5] |
Newman JA, Cooper CD, Roos AK, et al. Structures of Two Melanoma-Associated Antigens Suggest Allosteric Regulation of Effector Binding[J]. PLoS One, 2016, 11(2): e0148762. doi: 10.1371/journal.pone.0148762
|
[6] |
Hagiwara Y, Sieverling L, Hanif F, et al. Consequences of point mutations in melanoma-associated antigen 4 (MAGE-A4) protein: Insights from structural and biophysical studies[J]. Sci Rep, 2016, 6: 25182. doi: 10.1038/srep25182
|
[7] |
Chen HY, Chen RH. Cullin 3 Ubiquitin Ligases in Cancer Biology: Functions and Therapeutic Implications[J]. Front Oncol, 2016, 6: 113. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852199/
|
[8] |
Varshavsky A. The Ubiquitin System, Autophagy, and Regulated Protein Degradation[J]. Annu Rev Biochem, 2017, 86: 123-28. doi: 10.1146/annurev-biochem-061516-044859
|
[9] |
Livneh I, Kravtsova-Ivantsiv Y, Braten O, et al. Monoubiquitination joins polyubiquitination as an esteemed proteasomal targeting signal[J]. Bioessays, 2017, 39(6). http://europepmc.org/abstract/MED/28493408
|
[10] |
Sadowski M, Suryadinata R, Tan AR, et al. Protein monoubiquitination and polyubiquitination generate structural diversity to control distinct biological processes[J]. IUBMB Life, 2012, 64(2): 136-42. doi: 10.1002/iub.589
|
[11] |
Natarajan C, Takeda K. Regulation of various DNA repair pathways by E3 ubiquitin ligases[J]. J Cancer Res Ther, 2017, 13(2): 157-69. doi: 10.4103/0973-1482.204879
|
[12] |
O'Connor HF, Huibregtse JM. Enzyme-substrate relationships in the ubiquitin system: approaches for identifying substrates of ubiquitin ligases[J]. Cell Mol Life Sci, 2017, 74(18): 3363-75. doi: 10.1007/s00018-017-2529-6
|
[13] |
Zheng N, Zhou Q, Wang Z, et al. Recent advances in SCF ubiquitin ligase complex: Clinical implications[J]. Biochim Biophys Acta, 2016, 1866(1): 12-22.
|
[14] |
Zheng N, Shabek N. Ubiquitin Ligases: Structure, Function, and Regulation[J]. Annu Rev Biochem, 2017, 86: 129-57. doi: 10.1146/annurev-biochem-060815-014922
|
[15] |
Genschik P, Sumara I, Lechner E. The emerging family of CULLIN3-RING ubiquitin ligases (CRL3s): cellular functions and disease implications[J]. EMBO J, 2013, 32(17): 2307-20. doi: 10.1038/emboj.2013.173
|
[16] |
Chen Z, Sui J, Zhang F, et al. Cullin family proteins and tumorigenesis: genetic association and molecular mechanisms[J]. J Cancer, 2015, 6(3): 233-42. doi: 10.7150/jca.11076
|
[17] |
Inuzuka H, Gao D, Finley LW, et al. Acetylation-dependent regulation of Skp2 function[J]. Cell, 2012, 150(1): 179-93. doi: 10.1016/j.cell.2012.05.038
|
[18] |
Vriend J, Reiter RJ. Melatonin and the von Hippel-Lindau/HIF-1 oxygen sensing mechanism: A review[J]. Biochim Biophys Acta, 2016, 1865(2): 176-83. http://europepmc.org/abstract/MED/26899267
|
[19] |
Zhang L, Peng S, Dai X, et al. Tumor suppressor SPOP ubiquitinates and degrades EglN2 to compromise growth of prostate cancer cells[J]. Cancer Lett, 2017, 390: 11-20. doi: 10.1016/j.canlet.2017.01.003
|
[20] |
Hao J, Song X, Wang J, et al. Cancer-testis antigen MAGE-C2 binds Rbx1 and inhibits ubiquitin ligase-mediated turnover of cyclin E[J]. Oncotarget, 2015, 6(39): 42028-39. http://europepmc.org/articles/PMC4747207/
|
[21] |
Xiao TZ, Suh Y, Longley BJ. MAGE proteins regulate KRAB zinc finger transcription factors and KAP1 E3 ligase activity[J]. Arch Biochem Biophys, 2014, 563: 136-44. doi: 10.1016/j.abb.2014.07.026
|
[22] |
Jin X, Pan Y, Wang L, et al. MAGE-TRIM28 complex promotes the Warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation[J]. Oncogenesis, 2017, 6(4): e312. doi: 10.1038/oncsis.2017.21
|
[23] |
Feng Y, Gao J, Yang M. When MAGE meets RING: insights into biological functions of MAGE proteins[J]. Protein Cell, 2011, 2(1): 7-12. doi: 10.1007/s13238-011-1002-9
|
[24] |
Chen HZ, Tsai SY, Leone G. Emerging roles of E2Fs in cancer: an exit from cell cycle control[J]. Nat Rev Cancer, 2009, 9(11): 785-97. doi: 10.1038/nrc2696
|
[25] |
Minamide R, Fujiwara K, Hasegawa K, et al. Antagonistic interplay between necdin and Bmi1 controls proliferation of neural precursor cells in the embryonic mouse neocortex[J]. PLoS One, 2014, 9(1): e84460. doi: 10.1371/journal.pone.0084460
|
[26] |
Su S, Minges JT, Grossman G, et al. Proto-oncogene activity of melanoma antigen-A11 (MAGE-A11) regulates retinoblastoma-related p107 and E2F1 proteins[J]. J Biol Chem, 2013, 288(34): 24809-24. doi: 10.1074/jbc.M113.468579
|
[27] |
Peche LY, Ladelfa MF, Toledo MF, et al. Human MageB2 Protein Expression Enhances E2F Transcriptional Activity, Cell Proliferation, and Resistance to Ribotoxic Stress[J]. J Biol Chem, 2015, 290(49): 29652-62. doi: 10.1074/jbc.M115.671982
|
[28] |
Marcar L, Ihrig B, Hourihan J, et al. MAGE-A Cancer/Testis Antigens Inhibit MDM2 Ubiquitylation Function and Promote Increased Levels of MDM4[J]. PLoS One, 2015, 10(5): e127713. http://europepmc.org/articles/PMC4441487
|
[29] |
Marcar L, Maclaine NJ, Hupp TR, et al. Mage-A cancer/testis antigens inhibit p53 function by blocking its interaction with chromatin[J]. Cancer Res, 2010, 70(24): 10362-70. doi: 10.1158/0008-5472.CAN-10-1341
|
[30] |
Hao J, Song X, Wang J, et al. Cancer-testis antigen MAGE-C2 binds Rbx1 and inhibits ubiquitin ligase-mediated turnover of cyclin E[J]. Oncotarget, 2015, 6(39): 42028-39. http://europepmc.org/articles/PMC4747207/
|
[31] |
Su S, Chen X, Geng J, et al. Melanoma antigen-A11 regulates substrate-specificity of Skp2-mediated protein degradation[J]. Mol Cell Endocrinol, 2017, 439: 1-9. doi: 10.1016/j.mce.2016.10.006
|
[32] |
Pineda CT, Ramanathan S, Fon TK, et al. Degradation of AMPK by a cancer-specific ubiquitin ligase[J]. Cell, 2015, 160(4): 715-28. doi: 10.1016/j.cell.2015.01.034
|
[33] |
Pineda CT, Potts PR. Oncogenic MAGEA-TRIM28 ubiquitin ligase downregulates autophagy by ubiquitinating and degrading AMPK in cancer[J]. Autophagy, 2015, 11(5): 844-6. doi: 10.1080/15548627.2015.1034420
|
[34] |
Tosoni D, Zecchini S, Coazzoli M, et al. The Numb/p53 circuitry couples replicative self-renewal and tumor suppression in mammary epithelial cells[J]. J Cell Biol, 2015, 211(4): 845-62. doi: 10.1083/jcb.201505037
|