Citation: | WANG Jingya, TAN Wenyong. Advances of Dose-painting Radiotherapy[J]. Cancer Research on Prevention and Treatment, 2015, 42(10): 1037-1042. DOI: 10.3971/j.issn.1000-8578.2015.10.019 |
[1] |
Aerts HJ, Lambin P, Ruysscher DD. FDG for dose painting: a rational choice[J]. Radiother Oncol, 2010, 97(2): 163-4.
|
[2] |
Meijer G, Steenhuijsen J, Bal M, et al. Dose painting by contours versus dose painting by numbers for stage / lung cancer: practical implications of using a broad or sharp brush[J]. Radiother Oncol, 2011, 100(3): 396-401.
|
[3] |
Wu Q, Djajaputra D, Liu HH, et al. Dose sculpting with generalized equivalent uniform dose[J]. Med Phys, 2005, 32(5): 1387-96.
|
[4] |
Wang Y, Feng YL. The value of 18F-FDG PET-CT in the boost radiation dose to target volume for nasopharyngeal carcinoma[J]. Guo Ji Fang She Yi Xue He Xi Xue Za Zhi, 2011, 35(2): 84-8. [ ӱ, . 18F-FDG PET-CT ڱ ʰ еļ ֵ[J]. ʷ ҽѧ ҽѧ ־, 2011, 35(2): 84-8.]
|
[5] |
Zhang SX, Zhang SQ. The advancements of mulit-modal imaging guided radiothrapy for non-small cell lung cancer[J]. Ai Zheng Jin Zhan, 2013, 11(6): 520-4. [ , Ȥ. ģҽѧͼ ķ Сϸ ΰ о ½ չ[J]. ֢ չ, 2013, 11(6): 52 0-4.]
|
[6] |
Ling CC, Humm J, Larson S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality[J]. Int J Radiat Oncol Biol Phys, 2000, 47(3): 55 1-60.
|
[7] |
Bentzen SM. Theragnostic imaging for radiation oncology: dosepainting by numbers[J]. Lancet Oncol, 2005, 6(2): 112-7.
|
[8] |
Tanderup K, Olsen DR, Grau C. Dose painting: art or science?[J]. Radiother Oncol, 2006, 79(3): 245-8.
|
[9] |
Bentzen SM, Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription[J]. Semin Radiat Oncol, 2011, 21(2): 101-10.
|
[10] |
Gregoire V, Jeraj R, Lee JA, et al. Radiotherapy for head and neck tumours in 2012 and beyond: conformal, tailored, and adaptive?[J]. Lancet Oncol, 2012, 13(7): e292-300.
|
[11] |
Jeong J, Setton JS, Lee NY, et al. Estimate of the impact of FDGavidity on the dose required for head and neck radiotherapy local control[J]. Radiother Oncol, 2014, 111(3): 340-7.
|
[12] |
Abramyuk A, Tokalov S, Zophel K, et al. Is pre-therapeutical FDG-PET/CT capable to detect high risk tumor subvolumes responsible for local failure in non-small cell lung cancer?[J]. Radiother Oncol, 2009, 91(3): 399-404.
|
[13] |
Aerts HJ, van Baardwijk AA, Petit SF, et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)Fluorodeoxyglucose-PET-CT scan[J]. Radiother Oncol, 2009, 91(3): 386-92.
|
[14] |
Aerts HJ, Bosmans G, van Baardwijk AA, et al. Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study[J]. Int J Radiat Oncol Biol Phys, 2008, 71(5): 1402-7.
|
[15] |
van der Heide UA, Houweling AC, Groenendaal G, et al. Functional MRI for radiotherapy dose painting[J]. Magn Reson Imaging, 2012, 30(9): 1216-23.
|
[16] |
Tan W, Han G, Wei S, et al. Sparing functional anatomical structures during intensity-modulated radiotherapy: an old problem, a new solution[J]. Future Oncol, 2014, 10(11): 1863-72.
|
[17] |
Houweling AC, Wolf AL, Vogel WV, et al. FDG-PET and diffusion-weighted MRI in head-and-neck cancer patients: implications for dose painting[J]. Radiother Oncol, 2013, 106(2): 25 0-4.
|
[18] |
Vogelius IR, Hakansson K, Due AK, et al. Failure-probability driven dose painting[J]. Med Phys, 2013, 40(8): 081717.
|
[19] |
Thorwarth D, Eschmann SM, Paulsen F, et al. Hypoxia dose painting by numbers: a planning study[J]. Int J Radiat Oncol Biol Phys, 2007, 68(1): 291-300.
|
[20] |
Chang JH, Wada M, Anderson NJ, et al. Hypoxia-targeted radiotherapy dose painting for head and neck cancer using (18) F-FMISO PET: a biological modeling study[J]. Acta Oncol, 20 13, 52(8): 1723-9.
|
[21] |
Duprez F, De Neve W, De Gersem W, et al. Adaptive dose painting by numbers for head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys, 2011, 80(4): 1045-55.
|
[22] |
Madani I, Duprez F, Boterberg T, et al. Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer[J]. Radiother Oncol, 2011, 101(3): 351-5.
|
[23] |
Bakst RL, Lee N, Pfister DG, et al. Hypofractionated dosepainting intensity modulated radiation therapy with chemotherapy for nasopharyngeal carcinoma: a prospective trial[J]. Int J Radiat Oncol Biol Phys, 2011, 80(1): 148-53.
|
[24] |
Berwouts D, Olteanu LA, Duprez F, et al. Three-phase adaptive dose-painting-by-numbers for head-and-neck cancer: initial results of the phase I clinical trial[J]. Radiother Oncol, 2013, 107(3): 31 0-36.
|
[25] |
Olteanu LA, Berwouts D, Madani I, et al. Comparative dosimetry of three-phase adaptive and non-adaptive dose-painting IMRT for head-and-neck cancer[J]. Radiother Oncol, 2014, 111(3): 348-53.
|
[26] |
Chi A, Nguyen NP, Welsh JS, et al. Strategies of dose escalation in the treatment of locally advanced non-small cell lung cancer: image guidance and beyond[J]. Front Oncol, 2014, 4: 156.
|
[27] |
Cox JD. Are the results of RTOG 0617 mysterious?[J]. Int J Radiat Oncol Biol Phys, 2012, 82(3): 1042-4.
|
[28] |
Tan S, Kligerman S, Chen W, et al. Spatial-temporal [(1)(8)F]FDGPET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys, 2013, 85(5): 1375-82.
|
[29] |
Zhang H, Tan S, Chen W, et al. Modeling pathologic response of esophageal cancer to chemoradiation therapy using spatialtemporal 18 F-FDG PET features, clinical parameters, and demographics[J]. Int J Radiat Oncol Biol Phys, 2014, 88(1): 19 5-203.
|
[30] |
Dirscherl T, Rickhey M, Bogner L. Feasibility of TCP-based dose painting by numbers applied to a prostate case with (18)F-choline PET imaging[J]. Z Med Phys, 2012, 22(1): 48-57.
|
[31] |
Abe E, Mizowaki T, Norihisa Y, et al. Impact of multileaf collimator width on intraprostatic dose painting plans for dominant intraprostatic lesion of prostate cancer[J]. J Appl Clin Med Phys, 2010, 11(4): 3193.
|
[32] |
Jingu K, Ariga H, Kaneta T, et al. Focal dose escalation using FDG-PET-guided intensity-modulated radiation therapy boost for postoperative local recurrent rectal cancer: a planning study with comparison of DVH and NTCP[J]. BMC Cancer, 2010, 10: 127.
|
[33] |
Morikawa LK, Zelefsky MJ, Cohen GN, et al. Intraoperative highdose- rate brachytherapy using dose painting technique: evaluation of safety and preliminary clinical outcomes[J]. Brachytherapy, 20 13, 12(1): 1-7.
|
[34] |
Kachnic LA, Tsai HK, Coen JJ, et al. Dose-painted intensitymodulated radiation therapy for anal cancer: a multi-institutional report of acute toxicity and response to therapy[J]. Int J Radiat Oncol Biol Phys, 2012, 82(1): 153-8.
|
[35] |
Kachnic LA, Winter K, Myerson RJ, et al. RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal[J]. Int J Radiat Oncol Biol Phys, 2013, 86(1): 27-33.
|
[36] |
Hakansson K, Specht L, Aznar MC, et al. Prescribing and evaluating target dose in dose-painting treatment plans[J]. Acta Oncol, 2014, 53(9): 1251-6.
|
[37] |
Alber M, Thorwarth D. Multi-modality functional image guided dose escalation in the presence of uncertainties[J]. Radiother Oncol, 2014, 111(3): 354-9.
|
[38] |
Bassler N, Jakel O, Sondergaard CS, et al. Dose- and LET-painting with particle therapy[J]. Acta Oncol, 2010, 49(7): 1170-6.
|
[39] |
Rickhey M, Moravek Z, Eilles C, et al. 18F-FET-PET-based dose painting by numbers with protons[J]. Strahlenther Onkol, 2010, 18 6(6): 320-6.
|
[40] |
Deveau MA, Bowen SR, Westerly DC, et al. Feasibility and sensitivity study of helical tomotherapy for dose painting plans[J]. Acta Oncol, 2010, 49(7): 991-6.
|
[41] |
Korreman SS, Ulrich S, Bowen S, et al. Feasibility of dose painting using volumetric modulated arc optimization and delivery[J]. Acta Oncol, 2010, 49(7): 964-71.
|
[1] | SONG Peng, LONG Tong, LIANG Peiyu, OU Shanji. Effects of Long Non-coding RNA-MALAT1 on Proliferation and Apoptosis of Prostate Cancer Cells[J]. Cancer Research on Prevention and Treatment, 2019, 46(5): 411-416. DOI: 10.3971/j.issn.1000-8578.2019.18.1198 |
[2] | ZENG Qin, LIU Xun, CHEN Ming, YANG Zhihui. Effects of RNAi Silencing GTPBP4 Gene on Proliferation and Apoptosis of Colon Cancer RKO Cells[J]. Cancer Research on Prevention and Treatment, 2017, 44(1): 23-27. DOI: 10.3971/j.issn.1000-8578.2017.01.005 |
[3] | BIAN Jin, WANG Lin, XUN Chen, HUANG Wei, QIN Shukui. Sequence-dependent Effects and Mechanism of Pemetrexed and Gefitinib on Human Lung Adenocarcinoma Cells[J]. Cancer Research on Prevention and Treatment, 2014, 41(12): 1266-1270. DOI: 10.3971/j.issn.1000-8578.2014.12.002 |
[4] | YIN Baohui, JIA Xiuhong, LI Jianchang. Effects of RNA Interfere Targeting HOXA7 on Proliferation and Apoptosis of U937 Cells[J]. Cancer Research on Prevention and Treatment, 2014, 41(06): 573-577. DOI: 10.3971/j.issn.1000-8578.2014.06.014 |
[5] | Zeng Yongqiu, Cao Yang, Mei Zhiqiang, Liu Lan, Shui Qinglin. Effects of SEPT9 Gene Silencing on Cell Proliferation and Apoptosis of HepG2 Hepatoma Cells[J]. Cancer Research on Prevention and Treatment, 2013, 40(03): 236-239. DOI: 10.3971/j.issn.1000-8578.2013.03.004 |
[6] | Chen Yan, Zhou Yongchun, Jin Congguo, Wu Zhiping, Liu Xin, Chen Xiaoqun, Li Jia, Wang Xicai. Inhibition of Lentivirus-mediated ITGB4 shRNA on H460SM Cell Proliferation[J]. Cancer Research on Prevention and Treatment, 2012, 39(09): 1070-1075. DOI: 10.3971/j.issn.1000-8578.2012.09.007 |
[7] | Zhou Ruijuan, Chen Hongfeng, Ye Meina, Liao Mingjuan. Effects of Formononetin on Proliferation and Cell Cycle of Different Subtypes of Breast Cancer Cell Lines[J]. Cancer Research on Prevention and Treatment, 2012, 39(09): 1051-1055. DOI: 10.3971/j.issn.1000-8578.2012.09.003 |
[8] | WANG Geng, HUANG Tao, XUE Jia-peng, WANG Ming-hua, HUI Zhen. Genistein Plays Antitumor Role through Cell Cycle and Apotosis Pathways in Human Breast Cancer Cell Line MCF-7/ADM in vitro[J]. Cancer Research on Prevention and Treatment, 2011, 38(08): 886-890. DOI: 10.3971/j.issn.1000-8578.2011.08.009 |
[9] | FENG Li-ying, QIN Yu-cai, MA Li, YIN Xi, SUN Ze-ming, TIAN Hui. Relationship between Expression of Trefoil Factor Family and Gastric Epithelial Cell Proliferation and Apoptosis in Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2010, 37(01): 63-65. DOI: 10.3971/j.issn.1000-8578.2010.01.017 |
[10] | Leng Jun, . The changes of cell cycle during the mucoepidermoid carcinoma cell apoptosis by Doxorubicin[J]. Cancer Research on Prevention and Treatment, 1998, 25(2): 92-94. |