Advanced Search
WANG Jingya, TAN Wenyong. Advances of Dose-painting Radiotherapy[J]. Cancer Research on Prevention and Treatment, 2015, 42(10): 1037-1042. DOI: 10.3971/j.issn.1000-8578.2015.10.019
Citation: WANG Jingya, TAN Wenyong. Advances of Dose-painting Radiotherapy[J]. Cancer Research on Prevention and Treatment, 2015, 42(10): 1037-1042. DOI: 10.3971/j.issn.1000-8578.2015.10.019

Advances of Dose-painting Radiotherapy

More Information
  • Received Date: November 14, 2014
  • Revised Date: January 06, 2015
  • For majority of malignancies, loco-regional failure remains the common pattern after definitive radiation therapy, and the possible reason might be that a homogenous radiation dose was usually delivered to the planning target volume without taking the spatial-temporal radiosensitive heterogeneity into account. The advanced imaging techniques such as positron emission tomography-computed tomography (PET-CT) and functional magnetic resonance imaging (fMRI) make the radiation dose be delivered to the subvolume or voxel in tumor with heterogeneous radio-sensitivity, i.e. dose-painting (DP) radiotherapy. The DP radiotherapy includes DP by contours (DPBC) or numbers (DPBN). It is feasible in technique that DP radiotherapy could be executed in the cancers of head and neck, lung, prostate and anorectum. But the DP radiation therapy is warranted to be improved in technique, software and hardware as well as to be investigated in clinical practice.
  • [1]
    Aerts HJ, Lambin P, Ruysscher DD. FDG for dose painting: a rational choice[J]. Radiother Oncol, 2010, 97(2): 163-4.
    [2]
    Meijer G, Steenhuijsen J, Bal M, et al. Dose painting by contours versus dose painting by numbers for stage / lung cancer: practical implications of using a broad or sharp brush[J]. Radiother Oncol, 2011, 100(3): 396-401.
    [3]
    Wu Q, Djajaputra D, Liu HH, et al. Dose sculpting with generalized equivalent uniform dose[J]. Med Phys, 2005, 32(5): 1387-96.
    [4]
    Wang Y, Feng YL. The value of 18F-FDG PET-CT in the boost radiation dose to target volume for nasopharyngeal carcinoma[J]. Guo Ji Fang She Yi Xue He Xi Xue Za Zhi, 2011, 35(2): 84-8. [ ӱ, . 18F-FDG PET-CT ڱ ʰ еļ ֵ[J]. ʷ ҽѧ ҽѧ ־, 2011, 35(2): 84-8.]
    [5]
    Zhang SX, Zhang SQ. The advancements of mulit-modal imaging guided radiothrapy for non-small cell lung cancer[J]. Ai Zheng Jin Zhan, 2013, 11(6): 520-4. [ , Ȥ. ģҽѧͼ ķ Сϸ ΰ о ½ չ[J]. ֢ չ, 2013, 11(6): 52 0-4.]
    [6]
    Ling CC, Humm J, Larson S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality[J]. Int J Radiat Oncol Biol Phys, 2000, 47(3): 55 1-60.
    [7]
    Bentzen SM. Theragnostic imaging for radiation oncology: dosepainting by numbers[J]. Lancet Oncol, 2005, 6(2): 112-7.
    [8]
    Tanderup K, Olsen DR, Grau C. Dose painting: art or science?[J]. Radiother Oncol, 2006, 79(3): 245-8.
    [9]
    Bentzen SM, Gregoire V. Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription[J]. Semin Radiat Oncol, 2011, 21(2): 101-10.
    [10]
    Gregoire V, Jeraj R, Lee JA, et al. Radiotherapy for head and neck tumours in 2012 and beyond: conformal, tailored, and adaptive?[J]. Lancet Oncol, 2012, 13(7): e292-300.
    [11]
    Jeong J, Setton JS, Lee NY, et al. Estimate of the impact of FDGavidity on the dose required for head and neck radiotherapy local control[J]. Radiother Oncol, 2014, 111(3): 340-7.
    [12]
    Abramyuk A, Tokalov S, Zophel K, et al. Is pre-therapeutical FDG-PET/CT capable to detect high risk tumor subvolumes responsible for local failure in non-small cell lung cancer?[J]. Radiother Oncol, 2009, 91(3): 399-404.
    [13]
    Aerts HJ, van Baardwijk AA, Petit SF, et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy (18)Fluorodeoxyglucose-PET-CT scan[J]. Radiother Oncol, 2009, 91(3): 386-92.
    [14]
    Aerts HJ, Bosmans G, van Baardwijk AA, et al. Stability of 18F-deoxyglucose uptake locations within tumor during radiotherapy for NSCLC: a prospective study[J]. Int J Radiat Oncol Biol Phys, 2008, 71(5): 1402-7.
    [15]
    van der Heide UA, Houweling AC, Groenendaal G, et al. Functional MRI for radiotherapy dose painting[J]. Magn Reson Imaging, 2012, 30(9): 1216-23.
    [16]
    Tan W, Han G, Wei S, et al. Sparing functional anatomical structures during intensity-modulated radiotherapy: an old problem, a new solution[J]. Future Oncol, 2014, 10(11): 1863-72.
    [17]
    Houweling AC, Wolf AL, Vogel WV, et al. FDG-PET and diffusion-weighted MRI in head-and-neck cancer patients: implications for dose painting[J]. Radiother Oncol, 2013, 106(2): 25 0-4.
    [18]
    Vogelius IR, Hakansson K, Due AK, et al. Failure-probability driven dose painting[J]. Med Phys, 2013, 40(8): 081717.
    [19]
    Thorwarth D, Eschmann SM, Paulsen F, et al. Hypoxia dose painting by numbers: a planning study[J]. Int J Radiat Oncol Biol Phys, 2007, 68(1): 291-300.
    [20]
    Chang JH, Wada M, Anderson NJ, et al. Hypoxia-targeted radiotherapy dose painting for head and neck cancer using (18) F-FMISO PET: a biological modeling study[J]. Acta Oncol, 20 13, 52(8): 1723-9.
    [21]
    Duprez F, De Neve W, De Gersem W, et al. Adaptive dose painting by numbers for head-and-neck cancer[J]. Int J Radiat Oncol Biol Phys, 2011, 80(4): 1045-55.
    [22]
    Madani I, Duprez F, Boterberg T, et al. Maximum tolerated dose in a phase I trial on adaptive dose painting by numbers for head and neck cancer[J]. Radiother Oncol, 2011, 101(3): 351-5.
    [23]
    Bakst RL, Lee N, Pfister DG, et al. Hypofractionated dosepainting intensity modulated radiation therapy with chemotherapy for nasopharyngeal carcinoma: a prospective trial[J]. Int J Radiat Oncol Biol Phys, 2011, 80(1): 148-53.
    [24]
    Berwouts D, Olteanu LA, Duprez F, et al. Three-phase adaptive dose-painting-by-numbers for head-and-neck cancer: initial results of the phase I clinical trial[J]. Radiother Oncol, 2013, 107(3): 31 0-36.
    [25]
    Olteanu LA, Berwouts D, Madani I, et al. Comparative dosimetry of three-phase adaptive and non-adaptive dose-painting IMRT for head-and-neck cancer[J]. Radiother Oncol, 2014, 111(3): 348-53.
    [26]
    Chi A, Nguyen NP, Welsh JS, et al. Strategies of dose escalation in the treatment of locally advanced non-small cell lung cancer: image guidance and beyond[J]. Front Oncol, 2014, 4: 156.
    [27]
    Cox JD. Are the results of RTOG 0617 mysterious?[J]. Int J Radiat Oncol Biol Phys, 2012, 82(3): 1042-4.
    [28]
    Tan S, Kligerman S, Chen W, et al. Spatial-temporal [(1)(8)F]FDGPET features for predicting pathologic response of esophageal cancer to neoadjuvant chemoradiation therapy. Int J Radiat Oncol Biol Phys, 2013, 85(5): 1375-82.
    [29]
    Zhang H, Tan S, Chen W, et al. Modeling pathologic response of esophageal cancer to chemoradiation therapy using spatialtemporal 18 F-FDG PET features, clinical parameters, and demographics[J]. Int J Radiat Oncol Biol Phys, 2014, 88(1): 19 5-203.
    [30]
    Dirscherl T, Rickhey M, Bogner L. Feasibility of TCP-based dose painting by numbers applied to a prostate case with (18)F-choline PET imaging[J]. Z Med Phys, 2012, 22(1): 48-57.
    [31]
    Abe E, Mizowaki T, Norihisa Y, et al. Impact of multileaf collimator width on intraprostatic dose painting plans for dominant intraprostatic lesion of prostate cancer[J]. J Appl Clin Med Phys, 2010, 11(4): 3193.
    [32]
    Jingu K, Ariga H, Kaneta T, et al. Focal dose escalation using FDG-PET-guided intensity-modulated radiation therapy boost for postoperative local recurrent rectal cancer: a planning study with comparison of DVH and NTCP[J]. BMC Cancer, 2010, 10: 127.
    [33]
    Morikawa LK, Zelefsky MJ, Cohen GN, et al. Intraoperative highdose- rate brachytherapy using dose painting technique: evaluation of safety and preliminary clinical outcomes[J]. Brachytherapy, 20 13, 12(1): 1-7.
    [34]
    Kachnic LA, Tsai HK, Coen JJ, et al. Dose-painted intensitymodulated radiation therapy for anal cancer: a multi-institutional report of acute toxicity and response to therapy[J]. Int J Radiat Oncol Biol Phys, 2012, 82(1): 153-8.
    [35]
    Kachnic LA, Winter K, Myerson RJ, et al. RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal[J]. Int J Radiat Oncol Biol Phys, 2013, 86(1): 27-33.
    [36]
    Hakansson K, Specht L, Aznar MC, et al. Prescribing and evaluating target dose in dose-painting treatment plans[J]. Acta Oncol, 2014, 53(9): 1251-6.
    [37]
    Alber M, Thorwarth D. Multi-modality functional image guided dose escalation in the presence of uncertainties[J]. Radiother Oncol, 2014, 111(3): 354-9.
    [38]
    Bassler N, Jakel O, Sondergaard CS, et al. Dose- and LET-painting with particle therapy[J]. Acta Oncol, 2010, 49(7): 1170-6.
    [39]
    Rickhey M, Moravek Z, Eilles C, et al. 18F-FET-PET-based dose painting by numbers with protons[J]. Strahlenther Onkol, 2010, 18 6(6): 320-6.
    [40]
    Deveau MA, Bowen SR, Westerly DC, et al. Feasibility and sensitivity study of helical tomotherapy for dose painting plans[J]. Acta Oncol, 2010, 49(7): 991-6.
    [41]
    Korreman SS, Ulrich S, Bowen S, et al. Feasibility of dose painting using volumetric modulated arc optimization and delivery[J]. Acta Oncol, 2010, 49(7): 964-71.
  • Related Articles

    [1]SONG Peng, LONG Tong, LIANG Peiyu, OU Shanji. Effects of Long Non-coding RNA-MALAT1 on Proliferation and Apoptosis of Prostate Cancer Cells[J]. Cancer Research on Prevention and Treatment, 2019, 46(5): 411-416. DOI: 10.3971/j.issn.1000-8578.2019.18.1198
    [2]ZENG Qin, LIU Xun, CHEN Ming, YANG Zhihui. Effects of RNAi Silencing GTPBP4 Gene on Proliferation and Apoptosis of Colon Cancer RKO Cells[J]. Cancer Research on Prevention and Treatment, 2017, 44(1): 23-27. DOI: 10.3971/j.issn.1000-8578.2017.01.005
    [3]BIAN Jin, WANG Lin, XUN Chen, HUANG Wei, QIN Shukui. Sequence-dependent Effects and Mechanism of Pemetrexed and Gefitinib on Human Lung Adenocarcinoma Cells[J]. Cancer Research on Prevention and Treatment, 2014, 41(12): 1266-1270. DOI: 10.3971/j.issn.1000-8578.2014.12.002
    [4]YIN Baohui, JIA Xiuhong, LI Jianchang. Effects of RNA Interfere Targeting HOXA7 on Proliferation and Apoptosis of U937 Cells[J]. Cancer Research on Prevention and Treatment, 2014, 41(06): 573-577. DOI: 10.3971/j.issn.1000-8578.2014.06.014
    [5]Zeng Yongqiu, Cao Yang, Mei Zhiqiang, Liu Lan, Shui Qinglin. Effects of SEPT9 Gene Silencing on Cell Proliferation and Apoptosis of HepG2 Hepatoma Cells[J]. Cancer Research on Prevention and Treatment, 2013, 40(03): 236-239. DOI: 10.3971/j.issn.1000-8578.2013.03.004
    [6]Chen Yan, Zhou Yongchun, Jin Congguo, Wu Zhiping, Liu Xin, Chen Xiaoqun, Li Jia, Wang Xicai. Inhibition of Lentivirus-mediated ITGB4 shRNA on H460SM Cell Proliferation[J]. Cancer Research on Prevention and Treatment, 2012, 39(09): 1070-1075. DOI: 10.3971/j.issn.1000-8578.2012.09.007
    [7]Zhou Ruijuan, Chen Hongfeng, Ye Meina, Liao Mingjuan. Effects of Formononetin on Proliferation and Cell Cycle of Different Subtypes of Breast Cancer Cell Lines[J]. Cancer Research on Prevention and Treatment, 2012, 39(09): 1051-1055. DOI: 10.3971/j.issn.1000-8578.2012.09.003
    [8]WANG Geng, HUANG Tao, XUE Jia-peng, WANG Ming-hua, HUI Zhen. Genistein Plays Antitumor Role through Cell Cycle and Apotosis Pathways in Human Breast Cancer Cell Line MCF-7/ADM in vitro[J]. Cancer Research on Prevention and Treatment, 2011, 38(08): 886-890. DOI: 10.3971/j.issn.1000-8578.2011.08.009
    [9]FENG Li-ying, QIN Yu-cai, MA Li, YIN Xi, SUN Ze-ming, TIAN Hui. Relationship between Expression of Trefoil Factor Family and Gastric Epithelial Cell Proliferation and Apoptosis in Gastric Cancer[J]. Cancer Research on Prevention and Treatment, 2010, 37(01): 63-65. DOI: 10.3971/j.issn.1000-8578.2010.01.017
    [10]Leng Jun, . The changes of cell cycle during the mucoepidermoid carcinoma cell apoptosis by Doxorubicin[J]. Cancer Research on Prevention and Treatment, 1998, 25(2): 92-94.

Catalog

    Article views (1991) PDF downloads (764) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return