Advanced Search
LIU Ye, WANG Lifeng. Progress of Research on Diganosis and Treatment of Malignant Pleural Effusion[J]. Cancer Research on Prevention and Treatment, 2024, 51(10): 877-882. DOI: 10.3971/j.issn.1000-8578.2024.24.0304
Citation: LIU Ye, WANG Lifeng. Progress of Research on Diganosis and Treatment of Malignant Pleural Effusion[J]. Cancer Research on Prevention and Treatment, 2024, 51(10): 877-882. DOI: 10.3971/j.issn.1000-8578.2024.24.0304

Progress of Research on Diganosis and Treatment of Malignant Pleural Effusion

Funding: Special Funds for Health and Technology Development in Nanjing—Key Projects (No. ZKX23017)
More Information
  • Corresponding author:

    WANG Lifeng, E-mail: lifengwang@nju.edu.cn

  • Received Date: April 04, 2024
  • Revised Date: April 28, 2024
  • Accepted Date: July 02, 2024
  • Malignant pleural effusion (MPE) is one of the most common complications of advanced malignant diseases. The patients with MPE have a short survival time and poor prognosis. Clinical therapeutic measures have greatly improved with the deepened exploration of the mechanisms of MPE. Diagnosis hinges on cytology, which is typically based on pleural fluid aspiration or pleural biopsy. Although numerous interventions exist, local palliative treatment is favored for the treatment of MPE. Such treatment aims to alleviate symptoms, such as aggravated dyspnea, and prolong survival time. As molecular targeted therapies and immunotherapies have developed, new diagnostic procedures and treatments have become available for patients with MPE. The recent discovery of the progrowth property of pleural fluid which may be an active promoter of cancer progression suggests that early intervention for the management of MPE may have a positive effect on inhibiting cancer progression and improving prognosis. In coming years, considerable effort should be directed at sophisticated biomarker analysis to select appropriate treatment strategies for the management of MPE.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Psallidas I, Kalomenidis I, Porcel JM, et al. Malignant pleural effusion: from bench to bedside[J]. Eur Respir Rev, 2016, 25(140): 189-198. doi: 10.1183/16000617.0019-2016
    [2]
    Gayen S. Malignant Pleural Effusion: Presentation, Diagnosis, and Management[J]. Am J Med, 2022, 135(10): 1188-1192. doi: 10.1016/j.amjmed.2022.04.017
    [3]
    Song Z, Luo W, Zheng H, et al. Translational Nanotherapeutics Reprograms Immune Microenvironment in Malignant Pleural Effusion of Lung Adenocarcinoma[J]. Adv Healthc Mater, 2021, 10(12): e2100149. doi: 10.1002/adhm.202100149
    [4]
    Koegelenberg CFN, Shaw JA, Irusen EM, et al. Contemporary best practice in the management of malignant pleural effusion[J]. Ther Adv Respir Dis, 2018, 12: 1753466618785098.
    [5]
    Taghizadeh N, Fortin M, Tremblay A. US Hospitalizations for Malignant Pleural Effusions: Data From the 2012 National Inpatient Sample[J]. Chest, 2017, 151(4): 845-854. doi: 10.1016/j.chest.2016.11.010
    [6]
    Cheah HM, Lansley SM, Varano Della Vergiliana JF, et al. Malignant pleural fluid from mesothelioma has potent biological activities[J]. Respirology, 2017, 22(1): 192-199. doi: 10.1111/resp.12874
    [7]
    Zhang Z, Ji W, Huang J, et al. Characterization of the tumour microenvironment phenotypes in malignant tissues and pleural effusion from advanced osteoblastic osteosarcoma patients[J]. Clin Transl Med, 2022, 12(11): e1072. doi: 10.1002/ctm2.1072
    [8]
    Yi FS, Zhai K, Shi HZ. Helper T cells in malignant pleural effusion[J]. Cancer Lett, 2021, 500: 21-28. doi: 10.1016/j.canlet.2020.12.016
    [9]
    Niu Y, Zhou Q. Th17 cells and their related cytokines: vital players in progression of malignant pleural effusion[J]. Cell Mol Life Sci, 2022, 79(4): 194. doi: 10.1007/s00018-022-04227-z
    [10]
    Asciak R, Rahman NM. Malignant Pleural Effusion: From Diagnostics to Therapeutics[J]. Clin Chest Med, 2018, 39(1): 181-193. doi: 10.1016/j.ccm.2017.11.004
    [11]
    Mercer RM, Varatharajah R, Shepherd G, et al. Critical analysis of the utility of initial pleural aspiration in the diagnosis and management of suspected malignant pleural effusion[J]. BMJ Open Respir Res, 2020, 7(1): e000701. doi: 10.1136/bmjresp-2020-000701
    [12]
    Bhanvadia VM, Santwani PM, Vachhani JH. Analysis of diagnostic value of cytological smear method versus cell block method in body fluid cytology: study of 150 cases[J]. Ethiop J Health Sci, 2014, 24(2): 125-131. doi: 10.4314/ejhs.v24i2.4
    [13]
    Scherpereel A, Opitz I, Berghmans T, et al. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma[J]. Eur Respir J, 2020, 55(6): 1900953. doi: 10.1183/13993003.00953-2019
    [14]
    Ledwani A, Ghewade B, Jadhav U, et al. Unveiling Insights: A Comprehensive Review of the Role of Medical Thoracoscopy in Pleural Effusion Assessment[J]. Cureus, 2024, 16(2): e53516.
    [15]
    Zhang M, Yan L, Lippi G, et al. Pleural biomarkers in diagnostics of malignant pleural effusion: a narrative review[J]. Transl Lung Cancer Res, 2021, 10(3): 1557-1570. doi: 10.21037/tlcr-20-1111
    [16]
    Nguyen AH, Miller EJ, Wichman CS, et al. Diagnostic value of tumor antigens in malignant pleural effusion: a meta-analysis[J]. Transl Res, 2015, 166(5): 432-439. doi: 10.1016/j.trsl.2015.04.006
    [17]
    Zhu J, Feng M, Liang L, et al. Is neuron-specific enolase useful for diagnosing malignant pleural effusions? evidence from a validation study and meta-analysis[J]. BMC Cancer, 2017, 17(1): 590. doi: 10.1186/s12885-017-3572-2
    [18]
    Yang Y, Liu YL, Shi HZ. Diagnostic Accuracy of Combinations of Tumor Markers for Malignant Pleural Effusion: An Updated Meta-Analysis[J]. Respiration, 2017, 94(1): 62-69. doi: 10.1159/000468545
    [19]
    赵明娟, 刑双丽, 高宇. 细胞角质蛋白19片段抗原21-1、神经元特异性烯醇化酶和鳞状细胞癌抗原在非小细胞肺癌合并恶性胸腔积液患者中的表达及临床意义[J]. 癌症进展, 2022, 20(19): 1973-1976. [Zhao MJ, Xing SL, Gao Y. Expression and clinical significance of cyto-keratin 19 fragment antigen 21-1, neuron specific enolase and squamous cell carcinoma antigen in patients with non-small cell lung cancer and malignant pleural effusion[J]. Ai Zheng Jin Zhan, 2022, 20(19): 1973-1976.]

    Zhao MJ, Xing SL, Gao Y. Expression and clinical significance of cyto-keratin 19 fragment antigen 21-1, neuron specific enolase and squamous cell carcinoma antigen in patients with non-small cell lung cancer and malignant pleural effusion[J]. Ai Zheng Jin Zhan, 2022, 20(19): 1973-1976.
    [20]
    Pei XB, Wu XZ, Yi FS, et al. Diagnostic value of CD206(+)CD14(+) macrophages in diagnosis of lung cancer originated malignant pleural effusion[J]. J Thorac Dis, 2019, 11(7): 2730-2736. doi: 10.21037/jtd.2019.06.44
    [21]
    Zheng WQ, Hu ZD. Pleural fluid biochemical analysis: the past, present and future[J]. Clin Chem Lab Med, 2023, 61(5): 921-934. doi: 10.1515/cclm-2022-0844
    [22]
    Ahuja S, Ahuja R, Pandey S, et al. Diagnostic accuracy of International System for Reporting Serous Fluid Cytopathology: A systematic review and meta-analysis in malignancy diagnosis[J]. Cancer Cytopathol, 2024. Online ahead of print.
    [23]
    Mokánszki A, Bádon ES, Mónus A, et al. Cell-free DNA From Pleural Effusion Samples: Is It Right for Molecular Testing in Lung Adenocarcinoma?[J]. Pathol Oncol Res, 2021, 27: 613071. doi: 10.3389/pore.2021.613071
    [24]
    Méhes G, Mokánszki A, Tóth L, et al. Malignant pleural effusions for cancer genotyping: A matter of trans-pleural traffic of cell-free tumor DNA[J]. Mol Cell Probes, 2022, 61: 101793. doi: 10.1016/j.mcp.2022.101793
    [25]
    Zhao W, Cao XS, Han YL, et al. Diagnostic utility of pleural cell-free nucleic acids in undiagnosed pleural effusions[J]. Clin Chem Lab Med, 2022, 60(10): 1518-1524. doi: 10.1515/cclm-2022-0519
    [26]
    Bao Q, Xu Y, Ding M, et al. Identification of differentially expressed miRNAs in differentiating benign from malignant pleural effusion[J]. Hereditas, 2020, 157(1): 6. doi: 10.1186/s41065-020-00119-z
    [27]
    Jia J, Marazioti A, Voulgaridis A, et al. Clinical identification of malignant pleural effusions[J]. Transl Oncol, 2024, 39: 101800. doi: 10.1016/j.tranon.2023.101800
    [28]
    Dixon G, Bhatnagar R, Zahan-Evans N, et al. A Prospective Study to Evaluate a Diagnostic Algorithm for the Use of Fluid Lymphocyte Subset Analysis in Undiagnosed Unilateral Pleural Effusions[J]. Respiration, 2018, 95(2): 98-105. doi: 10.1159/000481290
    [29]
    Subirá D, Barriopedro F, Fernández J, et al. High sensitivity flow cytometry immunophenotyping increases the diagnostic yield of malignant pleural effusions[J]. Clin Exp Metastasis, 2023, 40(6): 505-515. doi: 10.1007/s10585-023-10236-4
    [30]
    Muruganandan S, Azzopardi M, Thomas R, et al. The Pleural Effusion And Symptom Evaluation (PLEASE) study of breathlessness in patients with a symptomatic pleural effusion[J]. Eur Respir J, 2020, 55(5): 1900980. doi: 10.1183/13993003.00980-2019
    [31]
    Jacobs B, Sheikh G, Youness HA, et al. Diagnosis and management of malignant pleural effusion: a decade in review[J]. Diagnostics (Basel), 2022, 12(4): 1016. doi: 10.3390/diagnostics12041016
    [32]
    Epelbaum O, Rahman NM. Contemporary approach to the patient with malignant pleural effusion complicating lung cancer[J]. Ann Transl Med, 2019, 7(15): 352. doi: 10.21037/atm.2019.03.61
    [33]
    刘玉杰, 田攀文. 抗血管生成治疗在恶性胸腔积液中的应用进展[J]. 肿瘤防治研究, 2020, 47(3): 208-212. [Liu YJ, Tian PW. Progress of Anti-angiogenic Therapies on Malignant Pleural Effusions[J]. Zhong Liu Fang Zhi Yan Jiu, 2020, 47(3): 208-212.] doi: 10.3971/j.issn.1000-8578.2020.19.0818

    Liu YJ, Tian PW. Progress of Anti-angiogenic Therapies on Malignant Pleural Effusions[J]. Zhong Liu Fang Zhi Yan Jiu, 2020, 47(3): 208-212. doi: 10.3971/j.issn.1000-8578.2020.19.0818
    [34]
    Chen D, Song X, Shi F, et al. Greater efficacy of intracavitary infusion of bevacizumab compared to traditional local treatments for patients with malignant cavity serous effusion[J]. Oncotarget, 2017, 8(21): 35262-35271. doi: 10.18632/oncotarget.13064
    [35]
    Jiang L, Li P, Gong Z, et al. Effective Treatment for Malignant Pleural Effusion and Ascites with Combined Therapy of Bevacizumab and Cisplatin[J]. Anticancer Res, 2016, 36(3): 1313-1318.
    [36]
    Song X, Chen D, Guo J, et al. Better efficacy of intrapleural infusion of bevacizumab with pemetrexed for malignant pleural effusion mediated from nonsquamous non-small cell lung cancer[J]. Onco Targets Ther, 2018, 11: 8421-8426. doi: 10.2147/OTT.S184030
    [37]
    Du N, Li X, Li F, et al. Intrapleural combination therapy with bevacizumab and cisplatin for non-small cell lung cancer-mediated malignant pleural effusion[J]. Oncol Rep, 2013, 29(6): 2332-2340. doi: 10.3892/or.2013.2349
    [38]
    He D, Ding R, Wen Q, et al. Novel therapies for malignant pleural effusion: Anti-angiogenic therapy and immunotherapy (Review)[J]. Int J Oncol, 2021, 58(3): 359-370. doi: 10.3892/ijo.2021.5174
    [39]
    Usui K, Sugawara S, Nishitsuji M, et al. A phase Ⅱ study of bevacizumab with carboplatin-pemetrexed in non-squamous non-small cell lung carcinoma patients with malignant pleural effusions: North East Japan Study Group Trial NEJ013A[J]. Lung Cancer, 2016, 99: 131-136. doi: 10.1016/j.lungcan.2016.07.003
    [40]
    Tamiya M, Tamiya A, Yamadori T, et al. Phase 2 study of bevacizumab with carboplatin-paclitaxel for non-small cell lung cancer with malignant pleural effusion[J]. Med Oncol, 2013, 30(3): 676. doi: 10.1007/s12032-013-0676-7
    [41]
    Murthy V, Katzman D, Sterman DH. Intrapleural immunotherapy: An update on emerging treatment strategies for pleural malignancy[J]. Clin Respir J, 2019, 13(5): 272-279. doi: 10.1111/crj.13010
    [42]
    Han L, Jiang Q, Yao W, et al. Thoracic injection of low-dose interleukin-2 as an adjuvant therapy improves the control of the malignant pleural effusions: a systematic review and meta-analysis base on Chinese patients[J]. BMC Cancer, 2018, 18(1): 725. doi: 10.1186/s12885-018-4581-5
    [43]
    Sterman DH, Alley E, Stevenson JP, et al. Pilot and Feasibility Trial Evaluating Immuno-Gene Therapy of Malignant Mesothelioma Using Intrapleural Delivery of Adenovirus-IFNα Combined with Chemotherapy[J]. Clin Cancer Res, 2016, 22(15): 3791-3800. doi: 10.1158/1078-0432.CCR-15-2133
    [44]
    Aggarwal C, Haas AR, Metzger S, et al. Phase Ⅰ Study of Intrapleural Gene-Mediated Cytotoxic Immunotherapy in Patients with Malignant Pleural Effusion[J]. Mol Ther, 2018, 26(5): 1198-1205. doi: 10.1016/j.ymthe.2018.02.015
    [45]
    Grosu HB, Arriola A, Stewart J, et al. PD-L1 detection in histology specimens and matched pleural fluid cell blocks of patients with NSCLC[J]. Respirology, 2019, 24(12): 1198-1203. doi: 10.1111/resp.13614
    [46]
    贾俊斌, 顾岩. 非小细胞肺癌相关恶性胸腔积液抗血管生成治疗与免疫治疗研究进展[J]. 中华肿瘤防治杂志, 2022, 29(23): 1702-1708. [Jia JB, Gu Y. Research progress of anti-angiogenic therapy and immunotherapy in malignant pleural effusion associated with non-small cell lung cancer[J]. Zhonghua Zhong Liu Fang Zhi Za Zhi, 2022, 29(23): 1702-1708.]

    Jia JB, Gu Y. Research progress of anti-angiogenic therapy and immunotherapy in malignant pleural effusion associated with non-small cell lung cancer[J]. Zhonghua Zhong Liu Fang Zhi Za Zhi, 2022, 29(23): 1702-1708.
    [47]
    Murthy P, Ekeke CN, Russell KL, et al. Making cold malignant pleural effusions hot: driving novel immunotherapies[J]. Oncoimmunology, 2019, 8(4): e1554969. doi: 10.1080/2162402X.2018.1554969
    [48]
    Donnenberg AD, Luketich JD, Dhupar R, et al. Treatment of malignant pleural effusions: the case for localized immunotherapy[J]. J Immunother Cancer, 2019, 7(1): 110. doi: 10.1186/s40425-019-0590-4
    [49]
    Liu Y, Wang L, Song Q, et al. Intrapleural nano-immunotherapy promotes innate and adaptive immune responses to enhance anti-PD-L1 therapy for malignant pleural effusion[J]. Nat Nanotechnol, 2022, 17(2): 206-216. doi: 10.1038/s41565-021-01032-w
    [50]
    Clive AO, Kahan BC, Hooper CE, et al. Predicting survival in malignant pleural effusion: development and validation of the LENT prognostic score[J]. Thorax, 2014, 69(12): 1098-1104. doi: 10.1136/thoraxjnl-2014-205285
    [51]
    Rozman A, Mok TSK. Is the LENT Score Already Outdated?[J]. Respiration, 2018, 96(4): 303-304. doi: 10.1159/000491678
    [52]
    Psallidas I, Kanellakis NI, Gerry S, et al. Development and validation of response markers to predict survival and pleurodesis success in patients with malignant pleural effusion (PROMISE): a multicohort analysis[J]. Lancet Oncol, 2018, 19(7): 930-939. doi: 10.1016/S1470-2045(18)30294-8
    [53]
    Asciak R, Kanellakis NI, Yao X, et al. Pleural Fluid Has Pro-Growth Biological Properties Which Enable Cancer Cell Proliferation[J]. Front Oncol, 2021, 11: 658395. doi: 10.3389/fonc.2021.658395
    [54]
    Addala DN, Kanellakis NI, Bedawi EO, et al. Malignant pleural effusion: Updates in diagnosis, management and current challenges[J]. Front Oncol, 2022, 12: 1053574. doi: 10.3389/fonc.2022.1053574
  • Cited by

    Periodical cited type(2)

    1. 安天棋,田建辉,周奕阳,罗斌,阙祖俊,刘瑶,于盼,赵瑞华,杨蕴. 免疫检查点抑制剂治疗相关胸腔积液的研究进展. 中国癌症杂志. 2025(03): 333-338 .
    2. 闫俊丽,曾浩. 重组人血管内皮抑制素联合顺铂胸腔灌注治疗老年恶性胸腔积液的效果及安全性分析. 中国合理用药探索. 2025(05): 42-48 .

    Other cited types(0)

Catalog

    Tables(1)

    Article views (1885) PDF downloads (539) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return