Citation: | LIU Yiyue, SU Yanyu, LYU Geng, XU Zizhen. Research Advances on CD47 Molecules in Tumor Microenvironment of Diffuse Large B-cell Lymphoma[J]. Cancer Research on Prevention and Treatment, 2023, 50(6): 616-621. DOI: 10.3971/j.issn.1000-8578.2023.22.1241 |
Diffuse large B-cell lymphoma (DLBCL) is a common, highly aggressive and heterogeneous hematologic malignancy in adults. Patients with DLBCL have substantially differences in molecular biological characteristics, clinical manifestations, and prognosis. Increasing evidence shows that the tumor microenvironment plays an important role in the occurrence and development of DLBCL. CD47, an integrin related protein, is overexpressed in DLBCL cells and plays a key role in immune escape of lymphoma. This work reviews the research progress of CD47 in DLBCL TME in terms of CD47-related signal pathway, CD47 role in DLBCL TME, and therapeutic strategies targeting CD47 in DLBCL TME.
Competing interests: The authors declare that they have no competing interests.
[1] |
Ta R, Yang D, Hirt C, et al. Molecular Diagnostic Review of Diffuse Large B-Cell Lymphoma and Its Tumor Microenvironment[J]. Diagnostics (Basel), 2022, 12(5): 1087. doi: 10.3390/diagnostics12051087
|
[2] |
Zhang W, Fan Y, Li M, et al. Therapy Strategy of CD47 in Diffuse Large B-Cell Lymphoma (DLBCL)[J]. Dis Markers, 2021, 2021: 4894022.
|
[3] |
Rosenwald A, Wright G, Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma[J]. N Engl J Med, 2002, 346(25): 1937-1947. doi: 10.1056/NEJMoa012914
|
[4] |
Sehn LH, Salles G. Diffuse Large B-Cell Lymphoma[J]. N Engl J Med, 2021, 384(9): 842-858. doi: 10.1056/NEJMra2027612
|
[5] |
Xu PP, Huo YJ, Zhao WL. All roads lead to targeted diffuse large B-cell lymphoma approaches[J]. Cancer Cell, 2022, 40(2): 131-133. doi: 10.1016/j.ccell.2022.01.013
|
[6] |
Ciavarella S, Vegliante MC, Fabbri M, et al. Dissection of DLBCL microenvironment provides a gene expression-based predictor of survival applicable to formalin-fixed paraffin-embedded tissue[J]. Ann Oncol, 2018, 29(12): 2363-2370. doi: 10.1093/annonc/mdy450
|
[7] |
Modi D, Potugari B, Uberti J. Immunotherapy for Diffuse Large B-Cell Lymphoma: Current Landscape and Future Directions[J]. Cancers (Basel), 2021, 13(22): 5827. doi: 10.3390/cancers13225827
|
[8] |
Lindberg FP, Lublin DM, Telen MJ, et al. Rh-related antigen CD47 is the signal-transducer integrin-associated protein[J]. J Biol Chem, 1994, 269(3): 1567-1570. doi: 10.1016/S0021-9258(17)42058-8
|
[9] |
Brown EJ, Frazier WA. Integrin-associated protein (CD47) and its ligands[J]. Trends Cell Biol, 2001, 11(3): 130-135. doi: 10.1016/S0962-8924(00)01906-1
|
[10] |
Huang CY, Ye ZH, Huang MY, et al. Regulation of CD47 expression in cancer cells[J]. Transl Oncol, 2020, 13(12): 100862. doi: 10.1016/j.tranon.2020.100862
|
[11] |
Chao MP, Tang C, Pachynski RK, et al. Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy[J]. Blood, 2011, 118(18): 4890-4901. doi: 10.1182/blood-2011-02-338020
|
[12] |
SpaargarenM. Lymphoma spread? Target CD47-SIRPα![J]. Blood, 2011, 118(18): 4762-4764. doi: 10.1182/blood-2011-09-375139
|
[13] |
Uger R, Johnson L. Blockade of the CD47-SIRPα axis: a promising approach for cancer immunotherapy[J]. Expert Opin Biol Ther, 2020, 20(1): 5-8. doi: 10.1080/14712598.2020.1685976
|
[14] |
Chao MP, Weissman IL, Majeti R. The CD47-SIRPα pathway in cancer immune evasion and potential therapeutic implications[J]. Curr Opin Immunol, 2012, 24(2): 225-232. doi: 10.1016/j.coi.2012.01.010
|
[15] |
Barclay AN, Brown MH. The SIRP family of receptors and immune regulation[J]. Nat Rev Immunol, 2006, 6(6): 457-464 doi: 10.1038/nri1859
|
[16] |
McCracken MN, Cha AC, Weissman IL. Molecular Pathways: Activating T Cells after Cancer Cell Phagocytosis from Blockade of CD47 "Don't Eat Me" Signals[J]. Clin Cancer Res, 2015, 21(16): 3597-3601. doi: 10.1158/1078-0432.CCR-14-2520
|
[17] |
Wu L, Yu GT, Deng WW, et al. Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma[J]. Oncoimmunology, 2018, 7(4): e1397248. doi: 10.1080/2162402X.2017.1397248
|
[18] |
Chao MP, Jaiswal S, Weissman-Tsukamoto R, et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47[J]. Sci Transl Med, 2010, 2(63): 63ra94.
|
[19] |
汪春秀. 弥漫大B细胞淋巴瘤IDO和CD47表达与RCHOP治疗反应及预后关系的研究[D]. 西南医科大学泸州医学院, 2014.
Wang CX. Reasearch on relationship between R-CHOP treatment response and prognosis with IDO and CD47 expression of diffuse large B-cell lymphoma patients[D]. Luzhou Medical College of Southwest Medical University, 2014.
|
[20] |
Sikic BI, Lakhani N, Patnaik A, et al. First-in-Human, First-in-Class Phase I Trial of the Anti-CD47 Antibody Hu5F9-G4 in Patients With Advanced Cancers[J]. J Clin Oncol, 2019, 37(12): 946-953. doi: 10.1200/JCO.18.02018
|
[21] |
Advani R, Flinn I, Popplewell L, et al. CD47 Blockade by Hu5F9-G4 and Rituximab in Non-Hodgkin's Lymphoma[J]. N Engl J Med, 2018, 379(18): 1711-1721. doi: 10.1056/NEJMoa1807315
|
[22] |
Liu X, Wu X, Wang Y, et al. CD47 promotes human glioblastoma invasion through activation of the PI3KAkt pathway[J]. Oncol Res, 2019, 27(4): 415-422. doi: 10.3727/096504018X15155538502359
|
[23] |
Liu Y, Chang Y, He X, et al. CD47 Enhances Cell Viability and Migration Ability but Inhibits Apoptosis in Endometrial Carcinoma Cells via the PI3K/Akt/mTOR Signaling Pathway[J]. Front Oncol, 2020, 10: 1525. doi: 10.3389/fonc.2020.01525
|
[24] |
Shinohara M, Ohyama N, Murata Y, et al. CD47 regulation of epithelial cell spreading and migration, and its signal transduction[J]. Cancer Sci, 2006, 97(9): 889-895. doi: 10.1111/j.1349-7006.2006.00245.x
|
[25] |
Hu T, Liu H, Liang Z, et al. Tumor-intrinsic CD47 signal regulates glycolysis and promotes colorectal cancer cell growth and metastasis[J]. Theranostics, 2020, 10(9): 4056-4072. doi: 10.7150/thno.40860
|
[26] |
Gao L, Chen K, Gao Q, et al. CD47 deficiency in tumor stroma promotes tumor progression by enhancing angiogenesis[J]. Oncotarget, 2017, 8(14): 22406-22413. doi: 10.18632/oncotarget.9899
|
[27] |
Hayat SMG, Bianconi V, Pirro M, et al. CD47: role in the immune system and application to cancer therapy[J]. Cell Oncol (Dordr), 2020, 43(1): 19-30.
|
[28] |
萧杏贤, 刘德, 姜朝晖. 弥漫性大细胞淋巴瘤患者PD-L1的表达及其不良预后因素分析[J]. 标记免疫分析与临床, 2021, 28(6): 963-968. https://www.cnki.com.cn/Article/CJFDTOTAL-BJMY202106016.htm
Xiao XX, Liu D, Jiang ZH. The Expression of PD-L1 in Patients with Diffuse Large B-Cell Lymphoma and Its Potential Poor Prognostic Factors[J]. Biao Ji Mian Yi Fen Xi Yu Lin Chuang, 2021, 28(6): 963-968. https://www.cnki.com.cn/Article/CJFDTOTAL-BJMY202106016.htm
|
[29] |
Poh AR, Ernst M. Targeting macrophages in cancer: from bench to bedside[J]. Front Oncol, 2018, 8: 49. doi: 10.3389/fonc.2018.00049
|
[30] |
Zhang M, Hutter G, Kahn SA, et al. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages in vivo[J]. PLoS One, 2016, 11(4): e0153550. doi: 10.1371/journal.pone.0153550
|
[31] |
黄玉洁, 黄鑫, 郭宝平, 等. 基于肿瘤免疫微环境的弥漫大细胞淋巴瘤预后分析[J]. 肿瘤预防与治疗, 2021, 34(2): 108-116. doi: 10.3969/j.issn.1674-0904.2021.02.003
Huang YJ, Huang X, Guo BP, et al. Prognostic Analysis of Diffuse Large B-Cell Lymphoma Based on Tumor Immune Microenvironment[J]. Zhong Liu Yu Fang Yu Zhi Liao, 2021, 34(2): 108-116. doi: 10.3969/j.issn.1674-0904.2021.02.003
|
[32] |
Liu XJ, Pu Y, Cron K, et al. CD47 blockade triggers T cell-mediated destruction of immunogenic tumors[J]. Nat Med, 2015, 21(10): 1209. doi: 10.1038/nm.3931
|
[33] |
Di Martino JS, Akhter T, Bravo-Cordero JJ. Remodeling the ECM: Implications for Metastasis and Tumor Dormancy[J]. Cancers (Basel), 2021, 13(19): 4916. doi: 10.3390/cancers13194916
|
[34] |
Kato H, Honda S, Yoshida H, Kashiwagi H, Shiraga M, Honma N, Kurata Y, Tomiyama Y. SHPS-1 negatively regulates integrin alphaIIbbeta3 function through CD47 without disturbing FAK phosphorylation[J]. J Thromb Haemost, 2005, 3(4): 763-774. doi: 10.1111/j.1538-7836.2005.01235.x
|
[35] |
Kaur S, Bronson SM, Pal-Nath D, et al. Functions of Thrombospondin-1 in the Tumor Microenvironment[J]. Int J Mol Sci, 2021, 22(9): 4570. doi: 10.3390/ijms22094570
|
[36] |
Cacciatore M, Guarnotta C, Calvaruso M, et al. Microenvironment-centred dynamics in aggressive B-cell lymphomas[J]. Adv Hematol, 2012, 2012: 138079.
|
[37] |
Marinaccio C, Ingravallo G, Gaudio F, et al. Microvascular density, CD68 and tryptase expression in human diffuse large B-cell lymphoma[J]. Leuk Res, 2014, 38(11): 1374-1377. doi: 10.1016/j.leukres.2014.09.007
|
[38] |
Wobser M, Siedel C, Kneitz H, et al. Microvessel density and expression of vascular endothelial growth factor and its receptors in different subtypes of primary cutaneous B-cell lymphoma[J]. Acta Derm Venereol, 2013, 93(6): 656-662. doi: 10.2340/00015555-1589
|
[39] |
Zhang X, Wang Y, Fan J, et al. Blocking CD47 efficiently potentiated therapeutic effects of anti-angiogenic therapy in non-small cell lung cancer[J]. J Immunother Cancer, 2019, 7(1): 346-356. doi: 10.1186/s40425-019-0812-9
|
[40] |
Kazama R, Miyoshi H, Takeuchi M, et al. Combination of CD47 and signal-regulatory protein-α constituting the "don't eat me signal" is a prognostic factor in diffuse large B-cell lymphoma[J]. Cancer Sci, 2020, 111(7): 2608-2619. doi: 10.1111/cas.14437
|
[41] |
Bouwstra R, He Y, de Boer J, et al. CD47 Expression Defines Efficacy of Rituximab with CHOP in Non-Germinal Center B-cell (Non-GCB) Diffuse Large B-cell Lymphoma Patients (DLBCL), but Not in GCB DLBCL[J]. Cancer Immunol Res, 2019, 7(10): 1663-1671. doi: 10.1158/2326-6066.CIR-18-0781
|
[42] |
Jiang Z, Sun H, Yu J, et al. Targeting CD47 for cancer immunotherapy[J]. J Hematol Oncol, 2021, 14(1): 180. doi: 10.1186/s13045-021-01197-w
|
[43] |
罗宜洋, 冯晓莉. CD47与淋巴瘤免疫治疗相关性的研究进展[J]. 肿瘤防治研究, 2021, 48(8): 799-803. doi: 10.3971/j.issn.1000-8578.2021.21.0253
Luo YY, Feng XL. Research Progress on Relation Between CD47 and Immunotherapy on Lymphoma[J]. Zhong Liu Fang Zhi Yan Jiu, 2021, 48(8): 799-803. doi: 10.3971/j.issn.1000-8578.2021.21.0253
|
[44] |
Advani R. CD47 blockade by Hu5F9-G4 and rituximab in non-hodgkin's lymphoma[J]. N Engl J Med, 2018, 379(18): 1711-1721. doi: 10.1056/NEJMoa1807315
|
[45] |
Ansell SM, Maris MB, Lesokhin AM, et al. Phase I study of the CD47 blocker TTI-621 in patients with relapsed or refractory hematologic malignancies[J]. Clin Cancer Res, 2021, 27(8): 2190-2199. doi: 10.1158/1078-0432.CCR-20-3706
|
[46] |
Ni H, Cao L, Wu Z, et al. Combined strategies for effective cancer immunotherapy with a novel anti-CD47 monoclonal antibody[J]. Cancer Immunol Immunother, 2022, 71(2): 353-363. doi: 10.1007/s00262-021-02989-2
|
[47] |
Qi J, Li J, Jiang B, et al. A phase Ⅰ/Ⅱa study of lemzoparlimab, a monoclonal antibody targeting CD47, in patients with relapsed and/or refractory acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS): initial phaseⅠ results[J]. Blood, 2020, 136(Suppl 1): 30-31.
|
[48] |
Dheilly E, Moine V, Broyer L, et al. Selective blockade of the ubiquitous checkpoint receptor CD47 Is enabled by dual-targeting bispecific antibodies[J]. Mol Ther, 2017, 25(2): 523-533. doi: 10.1016/j.ymthe.2016.11.006
|
[49] |
Sun J, Chen Y, Lubben B, et al. CD47-targeting antibodies as a novel therapeutic strategy in hematologic malignancies[J]. Leuk Res Rep, 2021, 16: 100268.
|
[50] |
Buatois V, Johnson Z, Salgado-Pires S. Preclinical Development of a Bispecific Antibody that Safely and Effectively Targets CD19 and CD47 for the Treatment of B-Cell Lymphoma and Leukemia[J]. Mol Cancer Ther, 2018, 17(8): 1739-1751. doi: 10.1158/1535-7163.MCT-17-1095
|
[51] |
van Rees DJ, Brinkhaus M, Klein B, et al. Sodium stibogluconate and CD47-SIRPα blockade overcome resistance of anti-CD20-opsonized B cells to neutrophil killing[J]. Blood Adv, 2022, 6(7): 2156-2166. doi: 10.1182/bloodadvances.2021005367
|
[52] |
Wang Y, Ni H, Zhou S, et al. Tumor-selective blockade of CD47 signaling with a CD47/PD-L1 bispecific antibody for enhanced anti-tumor activity and limited toxicity[J]. Cancer Immunol Immunother, 2021, 70(2): 365-376. doi: 10.1007/s00262-020-02679-5
|
[53] |
Chen H, Yang Y, Deng Y, et al. Delivery of CD47 blocker SIRPα-Fc by CAR-T cells enhances antitumor efficacy[J]. J Immunother Cancer, 2022, 10(2): e003737. doi: 10.1136/jitc-2021-003737
|
[1] | YU Jing, DENG Lu, ZHAO Yuting, YUAN Zhenlong, WU Lingying. MAPK4 Accelerates Progression of Cervical Squamous Cell Carcinoma by Positively Regulating SLC3A2 Expression[J]. Cancer Research on Prevention and Treatment, 2024, 51(10): 803-812. DOI: 10.3971/j.issn.1000-8578.2024.24.0472 |
[2] | WANG Ruihua, CAI Shiliang, LIU Donghong, CHEN Hongsen, CAO Guangwen. Research Progress of Androgen/Androgen Receptor Signaling Pathway in Hepatocellular Carcinoma[J]. Cancer Research on Prevention and Treatment, 2023, 50(2): 180-185. DOI: 10.3971/j.issn.1000-8578.2023.22.0714 |
[3] | WANG Zihe, LI Zengliang, FANG Xuzhe, ZHU Jin. Research Progress on Influence of DNA Methylation on Signal Pathways Related to Invasion and Metastasis of Nasopharyngeal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(9): 956-960. DOI: 10.3971/j.issn.1000-8578.2022.22.0052 |
[4] | LUO Yiyang, FENG Xiaoli. Research Progress on Relation Between CD47 and Immunotherapy on Lymphoma[J]. Cancer Research on Prevention and Treatment, 2021, 48(8): 799-803. DOI: 10.3971/j.issn.1000-8578.2021.21.0253 |
[5] | XUE Rui, GAO Jiping, YAN Xiaoru, XU Guoqiang, SONG Guohua. Effects of Autophagy-related Genes and Signal Pathways on Occurrence and Development of Oral Tumors[J]. Cancer Research on Prevention and Treatment, 2021, 48(5): 514-518. DOI: 10.3971/j.issn.1000-8578.2021.20.1377 |
[6] | WU Jian, ZHANG Hong, TAO Xiang. Progress on Stromal Cell-related Signaling Pathways in Endometrial Carcinoma Microenvironment[J]. Cancer Research on Prevention and Treatment, 2019, 46(8): 733-736. DOI: 10.3971/j.issn.1000-8578.2019.18.2028 |
[7] | ZHA Li, YU Jiaojiao, XU Bin. Research Progress of CD47-SIRPα Signaling Axis as An Innate Immune Checkpoint in Cancer[J]. Cancer Research on Prevention and Treatment, 2018, 45(8): 604-608. DOI: 10.3971/j.issn.1000-8578.2018.18.0217 |
[8] | WU Daichao, CHEN Lin, CHEN Yongheng, CHEN Zhuchu. Research Progress of FGFR4 Targeted Anti-tumor Drug[J]. Cancer Research on Prevention and Treatment, 2017, 44(1): 61-65. DOI: 10.3971/j.issn.1000-8578.2017.01.013 |
[9] | LI Haitao, TAN Chao, TIAN Shumei, ZHANG Xiaolin, ZHAO Yunyun. New Progress on Tumor-associated Macrophages in Tumor Microenvironment[J]. Cancer Research on Prevention and Treatment, 2015, 42(11): 1165-1168. DOI: 10.3971/j.issn.1000-8578.2015.11.024 |
[10] | GUO Zhen, JIAO Feng, JIN Ziliang, WANG Liwei. Roles of HOXB7 in Tumors and Related Signaling Pathways[J]. Cancer Research on Prevention and Treatment, 2015, 42(02): 200-203. DOI: 10.3971/j.issn.1000-8578.2015.02.022 |