Citation: | ZHANG Yanyan, ZHAO Min, LIU Jing, GUO Hongyan, HU Yinying, ZHAO Lin, WANG Zhigang. Effects of Circular RNA hsa_circ_0001922 on Proliferation, Migration and Invasion of Prostate Cancer Cells and Its Potential Molecular Mechanism[J]. Cancer Research on Prevention and Treatment, 2022, 49(7): 649-654. DOI: 10.3971/j.issn.1000-8578.2022.21.1328 |
To investigate the effect of circular RNA hsa_circ_0001922 on the proliferation, migration and invasion of prostate cancer cell PC-3 and its underlying molecular mechanism.
qRT-PCR and RNA FISH were used to detect the expression level and localization of hsa_circ_0001922 in PC-3 cells respectively. After hsa_circ_0001922 was targeted inhibited, clone formation, Transwell assay and scratch assay were used to detect the proliferation, migration and invasion abilities of PC-3 cells. qRT-PCR and Western blot were used to detect the expression levels of EMT pathway-related molecules after inhibiting hsa_circ_0001922.
The expression of circular RNA hsa_circ_0001922 was increased in PC-3 cells (P < 0.01) and it existed in the cytoplasm and nucleus. The invasion, migration and invasion abilities were significantly weakened (P < 0.05) after inhibiting hsa_circ_0001922; the expression of E-cadherin mRNA increased (P < 0.05) while the mRNA level of Vimentin decreased (P < 0.05). The results of Western blot were consistent with the above (both P < 0.05).
The circular RNA hsa_circ_0001922 may promote the proliferation, migration and invasion of PC-3 cells through the EMT pathway.
Competing interests: The authors declare that they have no competing interests.
[1] |
李星, 曾晓勇. 中国前列腺癌流行病学研究进展[J]. 肿瘤防治研究, 2021, 48(1): 98-102. doi: 10.3971/j.issn.1000-8578.2021.20.0370
Li X, Zeng XY. Advances in Epidemiology of Prostate Cancer in China[J]. Zhong Liu Fang Zhi Yan Jiu, 2021, 48(1): 98-102. doi: 10.3971/j.issn.1000-8578.2021.20.0370
|
[2] |
Feng RM, Zong YN, Cao SM, et al. Current cancer situation in China: good or bad news from the2018 Global Cancer Statistics?[J]. Cancer Commun (Lond), 2019, 39(1): 22. doi: 10.1186/s40880-019-0368-6
|
[3] |
顾秀瑛, 郑荣寿, 张思维, 等. 2000—2014年中国肿瘤登记地区前列腺癌发病趋势及年龄变化分析[J]. 中华预防医学杂志, 2018, 52(6): 586-592. doi: 10.3760/cma.j.issn.0253-9624.2018.06.006
Gu XY, Zheng RS, Zhang SW, et al. Analysis on the trend of prostate cancer incidence and age change in cancer registration areas of China, 2000 to 2014[J]. Zhonghua Yu Fang Yi Xue Za Zhi, 2018, 52(6): 586-592. doi: 10.3760/cma.j.issn.0253-9624.2018.06.006
|
[4] |
Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old challenges[J]. Genes Dev, 2010, 24(18): 1967-2000. doi: 10.1101/gad.1965810
|
[5] |
Ahmet T, Murat T. Future Prospects in the Diagnosis and Management of Localized Prostate Cancer[J]. Sci World J, 2013, 2013: 347263.
|
[6] |
Killick E, Bancroft E, Kote-Jarai Z, et al. Beyond prostate-specific antigen-futurebiomarkers for the early detection and management of prostate cancer[J]. Clin Oncol (R Coll Radiol), 2012, 24(8): 545-555. doi: 10.1016/j.clon.2012.05.001
|
[7] |
Ng WL, Mohd Mohidin TB, Shukla K. Functional role of circular RNAs in cancer development and progression[J]. RNA Biol, 2018, 15(8): 995-1005.
|
[8] |
Zhong Y, Du Y, Yang X, et al. Circular RNAs function as ceRNAs to regulate and control human cancer progression[J]. Mol Cancer, 2018, 17(1): 79. doi: 10.1186/s12943-018-0827-8
|
[9] |
Zang J, Lu D, Xu A. The interaction of circRNAs and RNA binding proteins: An important part of circRNA maintenance and function[J]. J Neurosci Res, 2020, 98(1): 87-97. doi: 10.1002/jnr.24356
|
[10] |
Shi Y, Jia X, Xu J. The new function of circRNA: translation[J]. Clin Transl Oncol, 2020, 22(12): 2162-2169. doi: 10.1007/s12094-020-02371-1
|
[11] |
Li YF, Pei FL, Cao MZ. CircRNA_101951 promotes migration and invasion of colorectal cancer cells by regulating the KIF3A-mediated EMT pathway[J]. Exp Ther Med, 2020, 19(5): 3355-3361.
|
[12] |
Wang C, Tan S, Li J, et al. CircRNAs in lung cancer - Biogenesis, function and clinical implication[J]. Cancer Lett, 2020, 492: 106-115. doi: 10.1016/j.canlet.2020.08.013
|
[13] |
Li R, Jiang J, Shi H, et al. CircRNA: a rising star in gastric cancer[J]. Cell Mol Life Sci, 2020, 77(9): 1661-1680. doi: 10.1007/s00018-019-03345-5
|
[14] |
Yang X, Ye T, Liu H, et al. Expression profiles, biological functions and clinical significance of circRNAs in bladder cancer[J]. Mol Cancer, 2021, 20(1): 4. doi: 10.1186/s12943-020-01300-8
|
[15] |
Li Q, Wang W, Zhang M, et al. Circular RNA circ-0016068 Promotes the Growth, Migration, and Invasion of Prostate Cancer Cells by Regulating the miR-330-3p/BMI-1 Axis as a Competing Endogenous RNA[J]. Front Cell Dev Biol, 2020, 8: 827. doi: 10.3389/fcell.2020.00827
|
[16] |
Shan G, Shao B, Liu Q, et al. circFMN2 Sponges miR-1238 to Promote the Expression of LIM-Homeobox Gene 2 in Prostate Cancer Cells[J]. Mol Ther Nucleic Acids, 2020, 21: 133-146. doi: 10.1016/j.omtn.2020.05.008
|
[17] |
Pilleron S, Sarfati D, Janssen-Heijnen M, et al. Global cancer incidence in older adults, 2012 and 2035: A population-based study[J]. Int J Cancer, 2019, 144(1): 49-58. doi: 10.1002/ijc.31664
|
[18] |
Schatten H. Brief Overview of Prostate Cancer Statistics, Grading, Diagnosis and Treatment Strategies[J]. Adv Exp Med Biol, 2018, 1095: 1-14.
|
[19] |
Zeng K, He B, Yang BB, et al. The pro-metastasis effect of circANKS1B in breast cancer[J]. Mol Cancer, 2018, 17(1): 160. doi: 10.1186/s12943-018-0914-x
|
[20] |
Wei S, Zheng Y, Jiang Y, et al. The circRNA circPTPRA suppresses epithelial-mesenchymal transitioning and metastasis of NSCLC cells by sponging miR-96-5p[J]. EBioMedicine, 2019, 44: 182-193. doi: 10.1016/j.ebiom.2019.05.032
|
[21] |
Li Q, Wang W, Zhang M, et al. Circular RNA circ-0016068 Promotes the Growth, Migration, and Invasion of Prostate Cancer Cells by Regulating the miR-330-3p/BMI-1 Axis as a Competing Endogenous RNA[J]. Front Cell Dev Biol, 2020, 8: 827. doi: 10.3389/fcell.2020.00827
|
[22] |
Feng Y, Yang Y, Zhao X, et al. Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP[J]. Cell Death Dis, 2019, 10(11): 792. doi: 10.1038/s41419-019-2028-9
|
[23] |
Odero-Marah V, Hawsawi O, Henderson V, et al. Epithelial-Mesenchymal Transition (EMT) and Prostate Cancer[J]. Adv Exp Med Biol, 2018, 1095: 101-110.
|
[24] |
Nauseef JT, Henry MD. Epithelial-to-mesenchymal transition in prostate cancer: paradigm or puzzle?[J]. Nat Rev Urol, 2011, 8(8): 428-439. doi: 10.1038/nrurol.2011.85
|
[25] |
Paolillo M, Schinelli S. Extracellular Matrix Alterations in Metastatic Processes[J]. Int J Mol Sci, 2019, 20(19): 4947. doi: 10.3390/ijms20194947
|
[1] | LIU Siqi, SUN Xin, LIU Na, LIN Fangcai. Effects of UBE2T on Proliferation, Apoptosis, and Epithelial-Mesenchymal Transition of Breast Cancer Cells[J]. Cancer Research on Prevention and Treatment, 2025, 52(4): 281-289. DOI: 10.3971/j.issn.1000-8578.2025.24.1037 |
[2] | LIN Huamei, ZOU Changyan, SU Ying, HU Dan, LIAO Jinrong, LIN Keyu, HE Huocong, ZHENG Xiongwei, LIN Xiandong. Effect of piR-9994 on Proliferation, Migration and Invasion of Gastric Cancer Cells and Its Mechanism[J]. Cancer Research on Prevention and Treatment, 2021, 48(10): 922-928. DOI: 10.3971/j.issn.1000-8578.2021.21.0468 |
[3] | CHEN Zeng, LIAO Jinrong, ZOU Changyan, SU Ying, LIN Keyu, JIN Shanfeng, ZHENG Qianlan, LIN Xiandong. Expression of circ_0006692 in Non-small Cell Lung Cancer and Its Regulatory Mechanism on Proliferation and Metastasis of Lung Cancer Cells[J]. Cancer Research on Prevention and Treatment, 2021, 48(9): 846-852. DOI: 10.3971/j.issn.1000-8578.2021.21.0383 |
[4] | LI Na, DAI Congwei, YANG Yanyan, WEI Qiang, QIU Gang, WU Xiaohua. Effect and Molecular Mechanism of MFG-E8 on Sensitivity of Ovarian Cancer SKOV3 Cells to Cisplatin[J]. Cancer Research on Prevention and Treatment, 2021, 48(5): 464-469. DOI: 10.3971/j.issn.1000-8578.2021.20.1012 |
[5] | YUAN Zhengtai, WANG Yongheng, HUANG Xiangjun. Effect and Mechanism of lncRNA FOXD2-AS1 on Proliferation, Invasion and Metastasis of Gastric Cancer Cells[J]. Cancer Research on Prevention and Treatment, 2020, 47(8): 583-589. DOI: 10.3971/j.issn.1000-8578.2020.19.1502 |
[6] | CHEN Meiling, JIANG Yingxiao, WANG Shuxiao, SUN Xiuning, ZHANG Xiaoqian, ZHENG Shuxian, ZHANG Baogang, SHI Lihong. Gab2 Promotes Invasion and Metastasis of Gastric Cancer via Regulating EMT[J]. Cancer Research on Prevention and Treatment, 2018, 45(6): 381-385. DOI: 10.3971/j.issn.1000-8578.2018.17.0881 |
[7] | ZHOU Xiaoguo, HAN Yuhui, DANG Qiang, GUO Na. Effect of Atg3 and Autophagy on Migration of Non-small Cell Lung Cancer A549 Cells[J]. Cancer Research on Prevention and Treatment, 2017, 44(8): 525-529. DOI: 10.3971/j.issn.1000-8578.2017.16.1017 |
[8] | HU Wenbing, WANG Gangsheng, CHEN Xi, CHEN Jun, YU Xifang. Effect of Down-regulating KLF8 Expression by siRNA on EMT in Nasopharyngeal Carcinoma Cells[J]. Cancer Research on Prevention and Treatment, 2016, 43(12): 1055-1058. DOI: 10.3971/j.issn.1000-8578.2016.12.009 |
[10] | ZHAO Hai-yan, HU Jie, WANG Ya-juan, WU Gong-fa, HAN Hui-xia. Significance of Tiam1 and SNAI1 in EMT of Human Colorectal Carcinoma[J]. Cancer Research on Prevention and Treatment, 2011, 38(06): 654-657. DOI: 10.3971/j.issn.1000-8578.2011.06.012 |