Advanced Search
YANG Linchao, LI Wenjie, CHEN Nan. Application of Nuclear Imaging Probes in PD-L1 Immunotherapy of Tumor[J]. Cancer Research on Prevention and Treatment, 2021, 48(12): 1123-1128. DOI: 10.3971/j.issn.1000-8578.2021.21.0673
Citation: YANG Linchao, LI Wenjie, CHEN Nan. Application of Nuclear Imaging Probes in PD-L1 Immunotherapy of Tumor[J]. Cancer Research on Prevention and Treatment, 2021, 48(12): 1123-1128. DOI: 10.3971/j.issn.1000-8578.2021.21.0673

Application of Nuclear Imaging Probes in PD-L1 Immunotherapy of Tumor

Funding: 

Special R & D and Promotion Programs of Henan (Tackling Key Problems in Science and Technology) 192102310418

More Information
  • Corresponding author:

    CHEN Nan, E-mail: 13598878231@163.com

  • Received Date: June 10, 2021
  • Revised Date: October 10, 2021
  • Available Online: January 12, 2024
  • Immunotherapy strategies of targeting PD-1 and its ligand PD-L1 are widely administered in varied types of cancer. Patient benefitting from PD-L1 targeted immunotherapy mainly depends on the expression level of PD-L1 in tumor tissues. Currently, the expression level of PD-L1 is primarily detected through the invasive method of biopsy in clinic, which is severely limited by the temporal and spatial heterogeneity of PD-L1 expression. Nuclear medicine probe can realize the noninvasive as well as in vivo detection of PD-L1 at the molecular level, which has important clinical significance for the guidance of patient screening and the prediction of patient's response to immunotherapy. This article reviews PD-L1 targeting nuclear imaging probes and their applications in tumor PD-L1 imaging.

  • Competing interests: The authors declare that they have no competing interests.

  • [1]
    Dong H, Strome SE, Salomao DR, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion[J]. Nat Med, 2002, 8(8): 793-800. doi: 10.1038/nm730
    [2]
    Chen L. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity[J]. Nat Rev Immunol, 2004, 4(5): 336-347. doi: 10.1038/nri1349
    [3]
    Shi L, Chen S, Yang L, et al. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies[J]. J Hematol Oncol, 2013, 6(1): 74. doi: 10.1186/1756-8722-6-74
    [4]
    Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer[J]. N Engl J Med, 2015, 372(21): 2018-2028. doi: 10.1056/NEJMoa1501824
    [5]
    Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial[J]. Lancet, 2017, 389(10066): 255-265. doi: 10.1016/S0140-6736(16)32517-X
    [6]
    Patil SP, Fink MA, Enley ES, et al. Identification of small-molecule inhibitors of PD-1/PD-L1 protein-protein interaction[J]. Chemistry Select, 2018, 3(7): 2185-2189. http://d.wanfangdata.com.cn/periodical/9c0fafdc441e389f9e792fc195a8b199
    [7]
    Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade[J]. Science, 2018, 359(6382): 1350-1355. doi: 10.1126/science.aar4060
    [8]
    Green MR, Monti S, Rodig SJ, et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma[J]. Blood, 2010, 116(17): 3268-3277. doi: 10.1182/blood-2010-05-282780
    [9]
    Gettinger S, Rizvi NA, Chow LQ, et al. Nivolumab Monotherapy for First-Line Treatment of Advanced Non-Small-Cell Lung Cancer[J]. J Clin Oncol, 2016, 34(25): 2980-2987. doi: 10.1200/JCO.2016.66.9929
    [10]
    Aris M, Mordoh J, Barrio MM. Immunomodulatory monoclonal antibodies in combined immunotherapy trials for cutaneous melanoma[J]. Front Immunol, 2017, 8: 1024. doi: 10.3389/fimmu.2017.01024
    [11]
    Davies M, Duffield EA. Safety of checkpoint inhibitors for cancer treatment: strategies for patient monitoring and management of immune-mediated adverse events[J]. Immunotargets Ther, 2017, 6: 51-71. doi: 10.2147/ITT.S141577
    [12]
    Truillet C, Oh HLJ, Yeo SP, et al. Imaging PD-L1 expression with immunoPET[J]. Bioconjug Chem, 2018, 29(1): 96-103. doi: 10.1021/acs.bioconjchem.7b00631
    [13]
    Chatterjee S, Lesniak WG, Nimmagadda S. Noninvasive imaging of immune checkpoint ligand PD-L1 in tumors and metastases for guiding immunotherapy[J]. Mol Imaging, 2017, 16: 1536012117718459. doi: 10.1177_1536012117718459.pdf
    [14]
    Wang GX, Kurra V, Gainor JF, et al. Immune Checkpoint Inhibitor Cancer Therapy: Spectrum of Imaging Findings[J]. Radiographics, 2017, 37(7): 2132-2144. doi: 10.1148/rg.2017170085
    [15]
    Kurra V, Sullivan RJ, Gainor JF, et al. Pseudoprogression in Cancer Immunotherapy: Rates, Time Course and Patient Outcomes[J]. J Clin Oncol, 2016, 34(15 suppl): 6580. http://www.researchgate.net/publication/327492236_Pseudoprogression_in_cancer_immunotherapy_Rates_time_course_and_patient_outcomes
    [16]
    Zhang X, Zeng Y, Qu Q, et al. PD-L1 induced by IFN-γ from tumor-associated macrophages via the JAK/STAT3 and PI3K/AKT signaling pathways promoted progression of lung cancer[J]. Int J Clin Oncol, 2017, 22(6): 1026-1033. doi: 10.1007/s10147-017-1161-7
    [17]
    Topalian SL, Taube JM, Anders RA, et al. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy[J]. Nat Rev Cancer, 2016, 16(5): 275-287. doi: 10.1038/nrc.2016.36
    [18]
    Patel SP, Kurzrock R. PD-L1 Expression as a Predictive Biomarker in Cancer Immunotherapy[J]. Mol Cancer Ther, 2015, 14(4): 847-856. doi: 10.1158/1535-7163.MCT-14-0983
    [19]
    Broos K, Lecocq Q, Raes G, et al. Noninvasive imaging of the PD-1: PD-L1 immune checkpoint: Embracing nuclear medicine for the benefit of personalized immunotherapy[J]. Theranostic, 2018, 8(13): 3559-3570. doi: 10.7150/thno.24762
    [20]
    Jreige M, Letovanec I, Chaba K, et al. 18F-FDG PET metabolic-to-morphological volume ratio predicts PD-L1 tumour expression and response to PD-1 blockade in non-small-cell lung cancer[J]. Eur J Nucl Med Mol Imaging, 2019, 46(9): 1859-1868. doi: 10.1007/s00259-019-04348-x
    [21]
    Li D, Zou S, Cheng S, et al. Monitoring the response of PD-L1 expression to epidermal growth factor receptor tyrosine kinase inhibitors in nonsmall-cell lung cancer xenografts by immuno-PET Imaging[J]. Mol Pharm, 2019, 16(8): 3469-3476. doi: 10.1021/acs.molpharmaceut.9b00307
    [22]
    Heskamp S, Hobo W, Molkenboer-Kuenen JD, et al. Noninvasive imaging of tumor PD-L1 expression using radiolabeled anti-PD-L1 antibodies[J]. Cancer Res, 2015, 75(14): 2928-2936. doi: 10.1158/0008-5472.CAN-14-3477
    [23]
    Christensen C, Kristensen LK, Alfsen MZ, et al. Quantitative PET imaging of PD-L1 expression in xenograft and syngeneic tumour models using a site-specifically labelled PD-L1 antibody[J]. Eur J Nucl Med Mol Imaging, 2020, 47(5): 1302-1313. doi: 10.1007/s00259-019-04646-4
    [24]
    Lesniak WG, Chatterjee S, Gabrielson M, et al. PD-L1 detection in tumors using[(64)Cu]Atezolizumab with PET[J]. Bioconjug Chem, 2016, 27(9): 2103-2110. doi: 10.1021/acs.bioconjchem.6b00348
    [25]
    Jagoda EM, Vasalatiy O, Basuli F, et al. Immuno-PET Imaging of the Programmed Cell Death-1 Ligand (PD-L1) Using a Zirconium-89 Labeled Therapeutic Antibody, Avelumab[J]. Mol Imaging, 2019, 18: 1536012119829986. http://www.ncbi.nlm.nih.gov/pubmed/31044647
    [26]
    Ehlerding EB, Lee HJ, Barnhart TE, et al. Noninvasive imaging and quantification of radiotherapy-induced PD-L1 upregulation with 89Zr-Df-Atezolizumab[J]. Bioconjug Chem, 2019, 30(5): 1434-1441. doi: 10.1021/acs.bioconjchem.9b00178
    [27]
    Bensch F, van der Veen EL, Lub-de Hooge MN, et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer[J]. Nat Med, 2018, 24(12): 1852-1858. doi: 10.1038/s41591-018-0255-8
    [28]
    Lee CM, Tannock IF. The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors[J]. BMC Cancer, 2010, 10: 255. doi: 10.1186/1471-2407-10-255
    [29]
    Maute RL, Gordon SR, Mayer AT, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging[J]. Proc Natl Acad Sci U S A, 2015, 11(47): E6506-E6514. http://www.pnas.org/content/112/47/E6506.abstract
    [30]
    Chatterjee S, Lesniak WG, Miller MS, et al. Rapid PD-L1 detection in tumors with PET using a highly specific peptide[J]. Biochem Biophys Res Commun, 2017, 483(1): 258-263. doi: 10.1016/j.bbrc.2016.12.156
    [31]
    Chatterjee S, Lesniak WG, Miller MS, et al. Corrigendum to "Rapid PD-L1 detection in tumors with PET using a highly specific peptide"[Biochemical and Biophysical Research Communications 483/1 (2017) 258-263[J]. Biochem Biophys Res Commun, 2017, 491(4): 1125. doi: 10.1016/j.bbrc.2017.08.001
    [32]
    De Silva RA, Kumar D, Lisok A, et al. Peptide-based 68Ga-PET radiotracer for imaging PD-L1 expression in cancer[J]. Mol Pharm, 2018, 15(9): 3946-3952. doi: 10.1021/acs.molpharmaceut.8b00399
    [33]
    Lesniak WG, Mease RC, Chatterjee S, et al. Development of[18F]FPy-WL12 as a PD-L1 specific PET imaging peptide[J]. Mol Imaging, 2019, 18: 1-9. http://www.researchgate.net/publication/333725912_Development_of_18_FFPy-WL12_as_a_PD-L1_Specific_PET_Imaging_Peptide
    [34]
    Donnelly DJ, Smith RA, Morin P, et al. Synthesis and biologic evaluation of a novel 18F-labeled adnectin as a PET radioligand for imaging PD-L1 expression[J]. J Nucl Med, 2018, 59(3): 529-535. doi: 10.2967/jnumed.117.199596
    [35]
    Niemeijer AN, Leung D, Huisman MC, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer[J]. Nat Commun, 2018, 9(1): 4664. doi: 10.1038/s41467-018-07131-y
    [36]
    Stutvoet TS, van der Veen EL, Kol A, et al. Molecular Imaging of PD-L1 Expression and Dynamics with the Adnectin-Based PET Tracer 18F-BMS-986192[J]. J Nucl Med, 2020, 61(12): 1839-1844. doi: 10.2967/jnumed.119.241364
    [37]
    González Trotter DE, Meng X, McQuade P, et al. In vivo imaging of the programmed death ligand 1 by 18F PET[J]. J Nucl Med, 2017, 58(11): 1852-1857. doi: 10.2967/jnumed.117.191718
    [38]
    Lv G, Sun X, Qiu L, et al. PET Imaging of Tumor PD-L1 Expression with a Highly Specific Nonblocking Single-Domain Antibody[J]. J Nucl Med, 2020, 61(1): 117-122. doi: 10.2967/jnumed.119.226712
    [39]
    Abdel-Magid AF. Inhibitors of the PD-1/PD-L1 pathway can mobilize the immune system: an innovative potential therapy for cancer and chronic infections[J]. ACS Med Chem Lett, 2015, 6(5): 489-490. doi: 10.1021/acsmedchemlett.5b00148
    [40]
    Zhan M, Hu X, Liu X, et al. From monoclonal antibodies to small molecules: the development of inhibitors targeting the PD-1/PD-L1 pathway[J]. Drug Discov Today, 2016, 21(6): 1027-1036. doi: 10.1016/j.drudis.2016.04.011
    [41]
    Han Y, Gao Y, He T, et al. PD-1/PD-L1 inhibitor screening of caffeoylquinic acid compounds using surface plasmon resonance spectroscopy[J]. Anal Biochem, 2018, 547: 52-56. doi: 10.1016/j.ab.2018.02.003
    [42]
    Kawashita S, Aoyagi K, Yamanaka H, et al. Symmetry-based ligand design and evaluation of small molecule inhibitors of programmed cell death-1/programmed death-ligand 1 interaction[J]. Bioorg Med Chem Lett, 2019, 29(17): 2464-2467. doi: 10.1016/j.bmcl.2019.07.027
    [43]
    Basu S, Yang J, Xu B, et al. Design, synthesis, evaluation, and structural studies of C2-symmetric small molecule inhibitors of programmed cell death-1/programmed death-ligand 1 protein-protein interaction[J]. J Med Chem, 2019, 62(15): 7250-7263. doi: 10.1021/acs.jmedchem.9b00795
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (2257) PDF downloads (1057) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return