高级搜索

头颈部鳞状细胞癌代谢重编程特征及靶向治疗应用前景

王瑞麟, 马玉秀, 刘学霖, 张奇, 王国印, 李红玲

王瑞麟, 马玉秀, 刘学霖, 张奇, 王国印, 李红玲. 头颈部鳞状细胞癌代谢重编程特征及靶向治疗应用前景[J]. 肿瘤防治研究, 2024, 51(12): 1046-1050. DOI: 10.3971/j.issn.1000-8578.2024.24.0545
引用本文: 王瑞麟, 马玉秀, 刘学霖, 张奇, 王国印, 李红玲. 头颈部鳞状细胞癌代谢重编程特征及靶向治疗应用前景[J]. 肿瘤防治研究, 2024, 51(12): 1046-1050. DOI: 10.3971/j.issn.1000-8578.2024.24.0545
WANG Ruilin, MA Yuxiu, LIU Xuelin, ZHANG Qi, WANG Guoyin, LI Hongling. Characterization of Metabolic Reprogramming in Head and Neck Squamous Cell Carcinoma and Application Prospects for Targeted Therapy[J]. Cancer Research on Prevention and Treatment, 2024, 51(12): 1046-1050. DOI: 10.3971/j.issn.1000-8578.2024.24.0545
Citation: WANG Ruilin, MA Yuxiu, LIU Xuelin, ZHANG Qi, WANG Guoyin, LI Hongling. Characterization of Metabolic Reprogramming in Head and Neck Squamous Cell Carcinoma and Application Prospects for Targeted Therapy[J]. Cancer Research on Prevention and Treatment, 2024, 51(12): 1046-1050. DOI: 10.3971/j.issn.1000-8578.2024.24.0545

头颈部鳞状细胞癌代谢重编程特征及靶向治疗应用前景

基金项目: 国家卫生健康委员会胃肠道肿瘤诊治重点实验室2022年硕博士基金项目(NHCDP2022005)
详细信息
    作者简介:

    王瑞麟(1998-),男,硕士在读,主要从事肿瘤相关临床及基础研究,ORCID: 0009-0007-5289-4885

    通信作者:

    李红玲(1969-),女,博士,主任医师,主要从事肿瘤相关临床及基础研究,E-mail: lihongling1969@126.com,ORCID: 0000-0002-4587-1761

  • 中图分类号: R739.6;R739.91

Characterization of Metabolic Reprogramming in Head and Neck Squamous Cell Carcinoma and Application Prospects for Targeted Therapy

Funding: 2022 Master's and Doctoral Fellowship Program of the Key Laboratory of Gastrointestinal Tumor Diagnosis and Treatment of the National Health Council (No. NHCDP2022005)
More Information
  • 摘要:

    头颈部鳞状细胞癌(HNSCC)是全球第七大常见的恶性肿瘤,其5年生存率仅为50%左右,亟需发现更有效的诊断和治疗方法。肿瘤细胞代谢重编程是HNSCC发生发展的一个关键特征,相比于正常细胞,HNSCC细胞广泛表现出糖酵解代谢、脂质代谢和氨基酸代谢的改变。这些代谢重编程不仅影响肿瘤细胞的能量供给和生物合成,还参与调节肿瘤微环境,促进HNSCC的增殖、侵袭和转移等关键生物学过程。随着对肿瘤生物学复杂性的理解逐渐深入,针对HNSCC中的代谢重编程,靶向治疗策略正在成为一种有希望的治疗方法。尽管这些代谢靶向治疗在临床前研究中表现良好,但临床应用仍需进一步验证。未来我们需要深入探讨HNSCC中更复杂的代谢重编程特征及其生物学意义,以期发现更多有效的诊断和治疗靶点,为改善HNSCC患者的预后提供新的策略。

     

    Abstract:

    Head and neck squamous cell carcinoma (HNSCC) is the seventh most common malignant tumor in the world, with a 5-year survival rate of only about 50%. Thus, discovering more effective diagnostic and therapeutic approaches is an urgent need. The metabolic reprogramming of tumor cells is a key feature in the development of HNSCC, which widely exhibits alterations in glycolytic metabolism, lipid metabolism, and amino acid metabolism compared with normal cells. Metabolic reprogramming affects the energy supply and biosynthesis of tumor cells. It also participates in the regulation of the tumor microenvironment and promotes key biological processes such as proliferation, invasion, and metastasis of HNSCC. With the progressive understanding of the complexity of tumor biology, targeted-therapy strategies against metabolic reprogramming in HNSCC are emerging as a promising therapeutic approach. These metabolically targeted therapies have performed well in preclinical studies, but their clinical application requires further validation. In the future, we need to deeply explore the more complex features of metabolic reprogramming and its biological significance in HNSCC, with the aim of discovering more effective diagnostic and therapeutic targets, as well as providing new strategies to improve the prognosis of HNSCC patients.

     

  • 头颈部癌症是全球第七大常见癌症,2020年新增病例931 922例,死亡467 125例,预计到2030年患者人数将增加30%[1]。这些癌症中约有90%起源于头颈部黏膜表面的鳞状细胞,按解剖部位可分为口腔癌、咽癌、喉癌、鼻旁窦癌、鼻腔癌和唾液腺癌[2]。 吸烟、饮酒、高危人瘤病毒(HPV)和EB病毒(EBV)感染已被确定为头颈部鳞状细胞癌(Head and neck squamous cell carcinoma, HNSCC)的风险因素[3]。尽管近年来手术、放化疗、靶向治疗和免疫治疗等治疗手段不断进步,HNSCC的5年生存率仍然较低,通常在50%左右[4]。因此,我们亟需深入探索HNSCC发生发展的新机制,以期发现更有效的诊断和治疗方法。肿瘤细胞的代谢重编程是其发生发展的一个关键特征,相比于正常细胞,肿瘤细胞通常表现出葡萄糖代谢增强、氨基酸和脂质代谢改变等特点,以满足其快速增殖和生存的需求[5]。这种代谢重编程不仅影响肿瘤细胞的能量供给和生物合成,还参与调节肿瘤微环境、促进侵袭转移等关键生物学过程。因此,深入探讨HNSCC中代谢重编程的特征及其生物学意义,有助于加深我们对HNSCC发生发展机制的了解,以期为HNSCC的早期诊断和个体化治疗提供新的思路和方法。

    糖酵解代谢重编程可以为快速增殖的肿瘤细胞提供所需的能量和代谢中间体,相比于正常细胞,HNSCC细胞普遍表现出葡萄糖代谢的增强,更多依赖于无氧糖酵解产生ATP,即所谓的“Warburg效应”[6]。有氧糖酵解与HNSCC的增殖、侵袭、转移和EMT有关[7],糖酵解标志物(如GLUT1、MCT4、HK2和PKM2)可能在HNSCC中发挥重要作用,并与不良预后有关[8]。葡萄糖转运蛋白1(GLUT1)在口腔鳞癌(OSCC)组织和细胞中的表达显著下调,miR-378通过与其3’UTR区域结合,抑制其表达进而减弱细胞糖酵解水平[9]。丙酮酸激酶M2(PKM2)是催化糖酵解最后一步产生腺苷ATP和丙酮酸的限速酶,在不同来源的HNSCC细胞系中,PKM2的表达和磷酸化激活(Tyr105)均有升高[10]。从机制上来讲,PKM2上调乳酸的产生并通过抑制NF-κB信号转导促进了HNSCC的肿瘤进展和Galectin-9介导的免疫抑制[11]。值得关注的是,EBV感染可通过上调GLUT1和LDHA的表达水平,增加EBV阳性OSCC乳酸产生和LDHA活性[12]。近年来,HPV相关HNSCC的发病率在美国和欧洲等国家逐年增加,对于这一特殊亚型的最新研究表明,HPV相关HNSCC细胞依赖于糖酵解,氧化磷酸化功能减弱[13]。此外,PI3K/Akt、EGFR和JAK/STAT信号转导通路在HNSCC的糖酵解过程中同样具有重要作用[14],例如核心时钟基因 1(PER1)可通过PI3K/AKT途径调节口腔鳞癌细胞糖酵解[15]

    脂质代谢可通过促进膜形成、能量生成和信号转导,甚至介导耐药性,支持癌细胞的生存、增殖、侵袭和转移[16]。HNSCC中脂质摄取增加,脂肪酸是参与脂质生物合成的一种重要分子,脂肪酸转运体分化簇36(CD36)和质膜脂肪酸结合蛋白(FABPs)的表达在HNSCC中明显升高[17-18]。甾醇调节元件结合蛋白 1(SREBP1)是一种参与脂质代谢的转录因子,SREBP1过表达与HNSCC患者分期、肿瘤分级和淋巴结分期呈正相关,敲除SREBP1可抑制HNSCC细胞增殖和迁移,并通过下调类固醇生成急性调节蛋白相关脂质转运蛋白4(STARD4)的表达诱导细胞凋亡[19]。HNSCC中脂质合成加速,ATP-柠檬酸裂解酶(ACLY) 将柠檬酸转化为乙酰辅酶A和草酰乙酸,用于合成细胞中的不同脂质,虽然没有直接证据表明ACLY在HNSCC中表达,但最新研究表明磷酸化ACLY在癌症相关成纤维细胞(CAFs)中上调,导致细胞膜乙酰-CoA水平升高和脂滴聚集,促进OSCC细胞增殖、侵袭和迁移[20]。此外,脂肪酸合酶(FASN)和羧化酶(ACC)等参与脂肪酸从头合成的关键酶过表达,为HNSCC细胞提供了膜合成和信号转导所需的脂质[21]。为了满足快速生长和入侵的要求,细胞内脂肪分解酶的活性也会增加,与正常人口腔角质形成细胞相比,HNSCC中磷脂酶A2(PLA2)活性增强,其低表达与患者预后不良相关[22]。除了上述关键脂质代谢步骤外,还有许多重要的信号通路参与脂质代谢调控,如PI3K/AKT、mTOR和AMPK通路等[23]

    氨基酸具有氧化还原平衡、能量调节、支持生物合成和维持体内平衡等重要作用,越来越多的研究关注其在癌症代谢中的角色[24]。代谢组学研究结果显示,谷氨酰胺酶在原发性和转移性HNSCC组织、瘤球和癌症干细胞中的表达高于对照样本[25],最新研究表明,谷氨酰胺的摄取对于HNSCC细胞增殖、ROS平衡、凋亡、自噬、细胞信号转导和对西妥昔单抗的反应也至关重要[26]。核磁共振氢谱分析数据显示,OSCC患者癌组织γ-氨基丁酸(GABA)含量增加,从机制上讲,谷氨酸被谷氨酰胺合成酶(GLUL)催化成谷氨酰胺,然后生成的谷氨酰胺被谷氨酰胺酶(GLS)代谢成谷氨酸。最后,谷氨酸-谷氨酰胺-谷氨酸循环产生的谷氨酸被谷氨酸脱羧酶2(GAD2)转化为GABA[27]。S-腺苷-L-蛋氨酸(SAM)是跨甲基化反应中的主要甲基供体,可抑制HNSCC细胞的迁移和侵袭能力,并抑制细胞周期的进展,降低周期抑制因子p21的表达[28]。此外,通过液相色谱-质谱法对氨基酸水平分析,发现天冬酰胺(Asp)和同型半胱氨酸(Hcy)可能是诊断和治疗喉癌的新生标志物[29]。对宫颈癌的研究提示,HPV编码的E6和E7癌蛋白以谷氨酰胺依赖的方式促进细胞增殖,然而,在HPV感染的HNSCC中,氨基酸代谢相关研究明显不足,有待进一步探究[30]

    综上,HNSCC细胞广泛发生糖酵解代谢、脂质代谢和氨基酸代谢的重编程,这为肿瘤提供了生长优势,并影响肿瘤微环境,促进HNSCC的发生发展。除此之外,包括核苷酸代谢重编程在内的其他代谢途径改变也参与HNSCC发生发展。

    细胞通常依靠线粒体氧化磷酸化产生能量,维持细胞周期。然而,癌细胞的快速增殖和转移总是需要大量能量。有氧糖酵解导致癌细胞中葡萄糖摄取和乳酸积累的增加。同时,它还加速了三磷酸腺苷(ATP)的产生,通过有氧糖酵解更快的能量供应有助于癌细胞的增殖[7]。Zhang等研究表明,表达ITGB2的CAFs向附近的OSCC细胞分泌乳酸,通过OXPHOS产生ATP,从而促进OSCC增殖[31]。此外,由于快速增殖速率和高代谢能量需求,其他代谢过程,如谷氨酰胺和脂质代谢,对于HNSCC能量供应和增殖都是至关重要的。已有研究表明,敲除SREBP1可抑制HNSCC细胞增殖[19],而降低细胞内谷氨酰胺水平同样可导致HNSCC生长和增殖减弱[26]

    早期HNSCC的治愈率很高,但复发或转移性HNSCC患者的生存率却急剧下降 ,代谢重编程不仅能够影响HNSCC的增殖和生长,在肿瘤细胞的侵袭及转移中也发挥着重要作用。高血糖水平会使乳酸分泌到细胞外空间,从而形成有利于癌细胞迁移和血管生成的肿瘤微环境(TME),Tang等研究表明,NRF2在HNSCC中显著上调,可对多代谢途径进行重编程,主要通过磷酸戊糖途径促进细胞的侵袭和迁移能力[32]。Yang等发现UBE2C与HNSCC患者的淋巴结转移相关,从机制上讲,UBE2C通过HIF-1α信号调控HNSCC细胞的糖酵解途径和侵袭能力[33]。CAFs的脂质代谢改变在肿瘤发生发展中也起着重要作用,阻断CAFs中的脂质合成或抑制OSCC细胞对脂肪酸的摄取降低了CAFs对OSCC细胞增殖、侵袭和迁移的促进作用,从机制上讲,AKT信号激活参与CAFs中脂质合成的上调[20]

    TME是肿瘤周围成分的总称,由复杂的网络组成,包括免疫细胞、基质细胞、周围血管、CAFs和信号分子。肿瘤细胞通过代谢重编程,改变其周围的微环境,创建一个有利于肿瘤细胞生存的环境,在调控肿瘤进展中发挥关键作用[34]。CAFs是TME中含量最丰富的基质成分之一,CAFs和非增殖性癌细胞表现出糖酵解代谢,Marina等研究提示,香烟烟雾可使癌症基质转向糖酵解,并诱发HNSCC的侵袭性[35]。在口腔黏膜下纤维化(OSF)来源的OSCC中,CAFs中葡萄糖含量的升高表明,CAFs和肿瘤细胞可能共同调节了肿瘤微环境中的葡萄糖代谢,还发现参与多胺合成的尿素循环受到明显抑制,肿瘤微环境更多地依赖谷氨酰胺-天门冬氨酸途径来补充鸟氨酸[36]。此外,肿瘤细胞的代谢重编程还影响肿瘤的血管生成,OSCC的CAFs表现出更强的糖代谢重编程和促血管生成表型[37]

    总之,代谢重编程在HNSCC的增殖、肿瘤微环境调节以及侵袭转移等关键过程中均发挥着重要作用。除此之外,代谢重编程在调控HNSCC化疗耐药性、免疫逃逸和血管生成等方面同样起着至关重要的作用。

    靶向糖酵解在临床前研究中显示出令人期待的结果,特别是在HNSCC的背景下。选择性抑制剂Fasentin和WZB-117可抑制GLUT1的活性,从而降低 HNSCC的恶性程度[38]。靶向糖酵解关键酶在 HNSCC中的应用也被广泛研究,靶向丙酮酸脱氢酶激酶-1(PDK-1)与西妥昔单抗组合治疗诱导了HNSCC细胞中ROS的过度产生和凋亡,在西妥昔单抗耐药的HNSCC异种移植模型中,这种组合同样诱导肿瘤消退,而单独使用任何一种药物都未能诱导肿瘤消退[39]。此外,丹参酮ⅡA抑制HK2介导的糖酵解可抑制OSCC细胞生长和肿瘤形成,从机制上讲,Tan ⅡA抑制Akt-c-Myc信号转导,促进E3连接酶FBW7介导的c-Myc泛素化和降解,最终降低HK2在转录水平上的表达[40]。综上,靶向糖酵解分子可以有效地抑制肿瘤生长,虽然迄今为止还没有糖酵解抑制剂在临床上用作抗HNSCC药物,然而基于PDK-1作为代谢靶点的癌症治疗已在包括HNSCC的多个临床试验中进行了探索[39]

    包括脂肪酸和胆固醇在内的脂质合成增加是肿瘤的一个特征。因此,针对这些途径中的关键酶正在成为一种潜在的癌症治疗策略,特别是与化疗和靶向治疗相结合。在西妥昔单抗治疗的HNSCC中,催化乙酰-CoA转化为丙二酰-CoA(脂肪酸合成的第一步)的ACCs上调,西妥昔单抗与ACCs抑制剂TOFA联合使用,可显著抑制对西妥昔单抗耐药的HNSCC异种移植瘤在体内的生长[41]。他汀类药物能够干扰癌细胞生存所必需的代谢途径,虽然用辛伐他汀治疗HNSCC荷瘤小鼠不会影响肿瘤的生长,但在肿瘤注射前2周进行预处理可抑制肿瘤生长,从而大大提高小鼠存活率[42]。顺铂耐药是有效治疗HNSCC的一大障碍,角鲨烯环氧化物酶(SQLE)被确定为化疗耐药和肿瘤发生的关键驱动因素,通过胆固醇依赖性途径起作用,顺铂和SQLE抑制剂特比萘芬的联合治疗在PDX模型和原位模型中都显示出了强大的协同效应[43]。就HNSCC而言,与糖酵解相比,脂质代谢在控制病理转变方面的重要性较少受到重视,因此靶向脂质代谢的研究较少。

    谷氨酰胺是癌细胞的主要能量来源和组成部分,其代谢在许多类型的癌症中都会发生改变,包括HNSCC。谷氨酰胺酶抑制剂替拉格纳司他(CB-839)已在Ⅰ/Ⅱ期癌症试验中进行了测试,患者耐受性良好,在两种异位HNSCC异种移植模型中,与单药治疗相比,CB-839能显著改善HNSCC的放射治疗反应[44]。此外,放疗后HNSCC中谷氨酰胺水平升高,谷氨酰胺转运蛋白 SLC1A5上调,阻断谷氨酰胺可显著提高放疗对HNSCC的疗效[45]。S-腺苷-L-蛋氨酸(AdoMet)是跨甲基化反应中的主要甲基供体,是维持表观遗传修饰的基础,AdoMet可诱导细胞周期停滞,并抑制两种不同HNSCC细胞系的迁移和侵袭,AdoMet和顺铂联合使用可协同抑制HNSCC细胞迁移[28]。L型氨基酸转运蛋白(LAT)作为治疗靶点最近引起了人们的关注,HNSCC中的LAT1阳性是影响总生存期和无进展生存期的独立预后因素,LAT1抑制剂JPH203能抑制LAT1阳性细胞的球形形成、侵袭和迁移[46]

    本综述中,我们探讨了糖酵解、脂质代谢和氨基酸代谢重编程在HNSCC中的研究进展及其调控机制。这些代谢重编程在肿瘤发生发展中具有重要作用,不仅能够改变能量供应、影响肿瘤细胞增殖、迁移和侵袭,还可调节肿瘤微环境、介导化疗耐药。此外,本研究还评估了靶向代谢途径的潜在治疗策略,如使用特定的代谢抑制剂或改变肿瘤微环境,以期打破肿瘤细胞的代谢适应性,提高治疗效果。然而,这些策略的临床应用仍面临一些挑战,包括如何精确定位代谢途径的关键节点,以及如何克服由于代谢适应性增强导致的治疗耐药性。总之,HNSCC的代谢重编程为我们提供了理解其病理机制和开发新疗法的新视角。未来的研究需要在更深层次上解析代谢通路与肿瘤行为之间的具体关联,并找到更为有效的治疗方法,以提高患者的生存率和生活质量。

    Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    王瑞麟、马玉秀、刘学霖:阅读收集相关文献及撰写论文
    张奇、王国印:修改、阅读和定稿
    李红玲:论文的修改和审定
  • [1]

    Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660

    [2]

    Chow LQM. Head and Neck Cancer[J]. N Engl J Med, 2020, 382(1): 60-72. doi: 10.1056/NEJMra1715715

    [3]

    Huang X, Duijf PHG, Sriram S, et al. Circulating tumour DNA alterations: emerging biomarker in head and neck squamous cell carcinoma[J]. J Biomed Sci, 2023, 30(1): 65. doi: 10.1186/s12929-023-00953-z

    [4]

    Cramer JD, Burtness B, Le QT, et al. The changing therapeutic landscape of head and neck cancer[J]. Nat Rev Clin Oncol, 2019, 16(11): 669-683. doi: 10.1038/s41571-019-0227-z

    [5]

    Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487): eaaw5473. doi: 10.1126/science.aaw5473

    [6]

    Raj S, Kumar A, Kumar D. Regulation of Glycolysis in Head and Neck Cancer[J]. Adv Exp Med Biol, 2021, 1280: 219-230.

    [7]

    Huang G, Chen S, Washio J, et al. Glycolysis-Related Gene Analyses Indicate That DEPDC1 Promotes the Malignant Progression of Oral Squamous Cell Carcinoma via the WNT/β-Catenin Signaling Pathway[J]. Int J Mol Sci, 2023, 24(3): 1992. doi: 10.3390/ijms24031992

    [8]

    Wang Y, Li Y, Jiang L, et al. Prognostic value of glycolysis markers in head and neck squamous cell carcinoma: a meta-analysis[J]. Aging (Albany NY), 2021, 13(5): 7284-7299.

    [9]

    Chen X, Yu J, Tian H, et al. Circle RNA hsa_circRNA_100290 serves as a ceRNA for miR-378a to regulate oral squamous cell carcinoma cells growth via Glucose transporter-1 (GLUT1) and glycolysis[J]. J Cell Physiol, 2019, 234(11): 19130-19140. doi: 10.1002/jcp.28692

    [10]

    Boschert V, Teusch J, Müller-Richter UDA, et al. PKM2 Modulation in Head and Neck Squamous Cell Carcinoma[J]. Int J Mol Sci, 2022, 23(2): 775. doi: 10.3390/ijms23020775

    [11]

    Chang H, Xu Q, Li J, et al. Lactate secreted by PKM2 upregulation promotes Galectin-9-mediated immunosuppression via inhibiting NF-κB pathway in HNSCC[J]. Cell Death Dis, 2021, 12(8): 725. doi: 10.1038/s41419-021-03990-4

    [12]

    Heawchaiyaphum C, Yoshiyama H, Iizasa H, et al. Epstein-Barr Virus Promotes Oral Squamous Cell Carcinoma Stemness through the Warburg Effect[J]. Int J Mol Sci, 2023, 24(18): 14072. doi: 10.3390/ijms241814072

    [13]

    Li N, Chamkha I, Verma G, et al. Human papillomavirus-associated head and neck squamous cell carcinoma cells rely on glycolysis and display reduced oxidative phosphorylation[J]. Front Oncol, 2024, 13: 1304106. doi: 10.3389/fonc.2023.1304106

    [14]

    Li Z, Liu J, Que L, et al. The immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral squamous carcinoma via PI3K/Akt/mTOR pathway[J]. Cancer, 2019, 10(23): 5770-5784. doi: 10.7150/jca.29838

    [15]

    Gong X, Tang H, Yang K. PER1 suppresses glycolysis and cell proliferation in oral squamous cell carcinoma via the PER1/RACK1/PI3K signaling complex[J]. Cell Death Dis, 2021, 12(3): 276. doi: 10.1038/s41419-021-03563-5

    [16]

    Chen X, Zhang Y, Zhu Y, et al. Metabolic reprogramming of chemoresistant cancer cells and the potential significance of metabolic regulation in the reversal of cancer chemoresistance[J]. Metabolites, 2020, 10(7): 289. doi: 10.3390/metabo10070289

    [17]

    Haidari S, Tröltzsch M, Knösel T, et al. Fatty Acid Receptor CD36 Functions as a Surrogate Parameter for Lymph Node Metastasis in Oral Squamous Cell Carcinma[J]. Cancers (Basel), 2021, 13(16): 4125. doi: 10.3390/cancers13164125

    [18]

    Ohyama Y, Kawamoto Y, Chiba T, et al. Differential expression of fatty acid-binding proteins and pathological implications in the progression of tongue carcinoma[J]. Mol Clin Oncol, 2014, 2(1): 19-25. doi: 10.3892/mco.2013.198

    [19]

    Tan M, Lin X, Chen H, et al. Sterol regulatory element binding transcription factor 1 promotes proliferation and migration in head and neck squamous cell carcinoma[J]. PeerJ, 2023, 11: e15203. doi: 10.7717/peerj.15203

    [20]

    Liu P, Wang Y, Li X, et al. Enhanced lipid biosynthesis in oral squamous cell carcinoma cancer-associated fibroblasts contributes to tumor progression: Role of IL8/AKT/p-ACLY axis[J]. Cancer Sci, 2024, 115(5): 1433-1445. doi: 10.1111/cas.16111

    [21]

    Miao X, Wang B, Chen K, et al. Perspectives of lipid metabolism reprogramming in head and neck squamous cell carcinoma: An overview[J]. Front Oncol, 2022, 12: 1008361. doi: 10.3389/fonc.2022.1008361

    [22]

    Luo X, Cheng C, Tan Z, et al. Emerging roles of lipid metabolism in cancer metastasis[J]. Mol Cancer, 2017, 16(1): 76. doi: 10.1186/s12943-017-0646-3

    [23]

    Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer[J]. Br J Cancer, 2020, 122(1): 4-22. doi: 10.1038/s41416-019-0650-z

    [24]

    Lieu EL, Nguyen T, Rhyne S, et al. Amino acids in cancer[J]. Exp Mol Med, 2020, 52(1): 15-30. doi: 10.1038/s12276-020-0375-3

    [25]

    Yang J, Guo Y, Seo W, et al. Targeting cellular metabolism to reduce head and neck cancer growth[J]. Sci Rep, 2019, 9(1): 4995. doi: 10.1038/s41598-019-41523-4

    [26]

    Zhang Z, Liu R, Shuai Y, et al. ASCT2 (SLC1A5)-dependent glutamine uptake is involved in the progression of head and neck squamous cell carcinoma[J]. Br J Cancer, 2020, 122(1): 82-93. doi: 10.1038/s41416-019-0637-9

    [27]

    Wu SL, Zha GY, Tian KB, et al. The metabolic reprogramming of γ-aminobutyrate in oral squamous cell carcinoma[J]. BMC Oral Health, 2024, 24(1): 418. doi: 10.1186/s12903-024-04174-0

    [28]

    Mosca L, Minopoli M, Pagano M, et al. Effects of S adenosyl L methionine on the invasion and migration of head and neck squamous cancer cells and analysis of the underlying mechanisms[J]. Int J Oncol, 2020, 56(5): 1212-1224.

    [29]

    Hu S, Zhao C, Wang Z, et al. Clinical diagnostic value of amino acids in laryngeal squamous cell carcinomas[J]. PeerJ, 2023, 11: e15469. doi: 10.7717/peerj.15469

    [30]

    Ortiz-Pedraza Y, Muñoz-Bello JO, Ramos-Chávez LA, et al. HPV16 E6 and E7 Oncoproteins Stimulate the Glutamine Pathway Maintaining Cell Proliferation in a SNAT1-Dependent Fashion[J]. Viruses, 2023, 15(2): 324. doi: 10.3390/v15020324

    [31]

    Zhang X, Dong Y, Zhao M, et al. ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system[J]. Theranostics, 2020, 10(26): 12044-12059. doi: 10.7150/thno.47901

    [32]

    Tang YC, Hsiao JR, Jiang SS, et al. c-MYC-directed NRF2 drives malignant progression of head and neck cancer via glucose-6-phosphate dehydrogenase and transketolase activation[J]. Theranostics, 2021, 11(11): 5232-5247. doi: 10.7150/thno.53417

    [33]

    Yang YF, Chang YC, Tsai KW, et al. UBE2C triggers HIF-1α-glycolytic flux in head and neck squamous cell carcinoma[J]. J Cell Mol Med, 2022, 26(13): 3716-3725. doi: 10.1111/jcmm.17400

    [34]

    Wang G, Zhang M, Cheng M, et al. Tumor microenvironment in head and neck squamous cell carcinoma: Functions and regulatory mechanisms[J]. Cancer Lett, 2021, 507: 55-69. doi: 10.1016/j.canlet.2021.03.009

    [35]

    Domingo-Vidal M, Whitaker-Menezes D, Martos-Rus C, et al. Cigarette Smoke Induces Metabolic Reprogramming of the Tumor Stroma in Head and Neck Squamous Cell Carcinoma[J]. Mol Cancer Res, 2019, 17(9): 1893-1909. doi: 10.1158/1541-7786.MCR-18-1191

    [36]

    Zhi Y, Wang Q, Zi M, et al. Spatial Transcriptomic and Metabolomic Landscapes of Oral Submucous Fibrosis-Derived Oral Squamous Cell Carcinoma and its Tumor Microenvironment[J]. Adv Sci (Weinh), 2024, 11(12): e2306515. doi: 10.1002/advs.202306515

    [37]

    Li X, Jiang E, Zhao H, et al. Glycometabolic reprogramming-mediated proangiogenic phenotype enhancement of cancer-associated fibroblasts in oral squamous cell carcinoma: role of PGC-1α/PFKFB3 axis[J]. Br J Cancer, 2022, 127(3): 449-461. doi: 10.1038/s41416-022-01818-2

    [38]

    Hsieh YT, Chen YF, Lin SC, et al. Targeting Cellular Metabolism Modulates Head and Neck Oncogenesis[J]. Int J Mol Sci, 2019, 20(16): 3960. doi: 10.3390/ijms20163960

    [39]

    Lu H, Lu Y, Xie Y, et al. Rational combination with PDK1 inhibition overcomes cetuximab resistance in head and neck squamous cell carcinoma[J]. JCI Insight, 2019, 4(19): e131106. doi: 10.1172/jci.insight.131106

    [40]

    Li M, Gao F, Zhao Q, et al. Tanshinone IIA inhibits oral squamous cell carcinoma via reducing Akt-c-Myc signaling-mediated aerobic glycolysis[J]. Cell Death Dis, 2020, 11(5): 381. doi: 10.1038/s41419-020-2579-9

    [41]

    Luo J, Hong Y, Lu Y, et al. Acetyl-CoA carboxylase rewires cancer metabolism to allow cancer cells to survive inhibition of the Warburg effect by cetuximab[J]. Cancer Lett, 2017, 384: 39-49. doi: 10.1016/j.canlet.2016.09.020

    [42]

    Mehibel M, Ortiz-Martinez F, Voelxen N, et al. Statin-induced metabolic reprogramming in head and neck cancer: a biomarker for targeting monocarboxylate transporters[J]. Sci Rep, 2018, 8(1): 16804. doi: 10.1038/s41598-018-35103-1

    [43]

    Zhao X, Guo B, Sun W, et al. Targeting Squalene Epoxidase Confers Metabolic Vulnerability and Overcomes Chemoresistance in HNSCC[J]. Adv Sci (Weinh), 2023, 10(27): e2206878. doi: 10.1002/advs.202206878

    [44]

    Wicker CA, Hunt BG, Krishnan S, et al. Glutaminase inhibition with telaglenastat (CB-839) improves treatment response in combination with ionizing radiation in head and neck squamous cell carcinoma models[J]. Cancer Lett, 2021, 502: 180-188. doi: 10.1016/j.canlet.2020.12.038

    [45]

    Song A, Wu L, Zhang BX, et al. Glutamine inhibition combined with CD47 blockade enhances radiotherapy-induced ferroptosis in head and neck squamous cell carcinoma[J]. Cancer Lett, 2024, 588: 216727. doi: 10.1016/j.canlet.2024.216727

    [46]

    Kawasaki Y, Suzuki H, Miura M, et al. LAT1 is associated with poor prognosis and radioresistance in head and neck squamous cell carcinoma[J]. Oncol Lett, 2023, 25(4): 171. doi: 10.3892/ol.2023.13757

计量
  • 文章访问数:  1077
  • HTML全文浏览量:  438
  • PDF下载量:  898
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-12
  • 修回日期:  2024-09-18
  • 录用日期:  2024-09-18
  • 网络出版日期:  2024-10-24
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回
x 关闭 永久关闭