高级搜索

铁死亡在头颈部鳞状细胞癌中的研究进展

谢章弘, 华清泉

谢章弘, 华清泉. 铁死亡在头颈部鳞状细胞癌中的研究进展[J]. 肿瘤防治研究, 2022, 49(4): 282-287. DOI: 10.3971/j.issn.1000-8578.2022.21.1117
引用本文: 谢章弘, 华清泉. 铁死亡在头颈部鳞状细胞癌中的研究进展[J]. 肿瘤防治研究, 2022, 49(4): 282-287. DOI: 10.3971/j.issn.1000-8578.2022.21.1117
XIE Zhanghong, HUA Qingquan. Research Progress of Ferroptosis in Head and Neck Squamous Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(4): 282-287. DOI: 10.3971/j.issn.1000-8578.2022.21.1117
Citation: XIE Zhanghong, HUA Qingquan. Research Progress of Ferroptosis in Head and Neck Squamous Cell Carcinoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(4): 282-287. DOI: 10.3971/j.issn.1000-8578.2022.21.1117

铁死亡在头颈部鳞状细胞癌中的研究进展

详细信息
    作者简介:

    谢章弘(1996-),男,硕士,住院医师,主要从事头颈肿瘤工作

    华清泉   医学博士,教授,主任医师,博士研究生导师,武汉大学人民医院耳鼻咽喉头颈外科主任。现任中华医学会耳鼻咽喉头颈外科分会委员、中国抗癌协会头颈肿瘤专业委员会常务委员、中国中西医结合学会耳鼻咽喉学会颅底专业委员会主任委员、湖北省医学会耳鼻喉科学分会主任委员、湖北省抗癌协会头颈肿瘤专业委员会主任委员。主要从事头颈肿瘤、耳科学与侧颅底外科。擅长头颈部恶性肿瘤切除与修复、中耳炎手术、人工听觉技术、听神经瘤手术等。承担国家自然科学基金3项,卫生部行业基金1项,省市科研项目4项。发表国内核心期刊论文100余篇,SCI论文10余篇

    通信作者:

    华清泉(1965-),男,博士,教授,主任医师,主要从事头颈肿瘤、耳科学及颅底外科工作,E-mail: hqqrm@sina.com

  • 中图分类号: R739.91

Research Progress of Ferroptosis in Head and Neck Squamous Cell Carcinoma

More Information
  • 摘要:

    头颈部鳞状细胞癌(HNSCC)作为全球发病率极高的癌症之一,由于晚期HNSCC手术治疗后易发生术后复发及对部分化疗药物的耐药性,患者预后情况并不乐观。因此,提高化学药物治疗HNSCC的效率,改善HNSCC患者预后成为目前亟需解决的问题。最新研究发现铁死亡对部分类型的肿瘤细胞的生长增殖具有调节作用,一定程度上降低了肿瘤治疗中的耐药性,在肿瘤的防治中展现出了巨大的潜力。因此,本文概述铁死亡抗肿瘤的作用机制及其在HNSCC中的研究进展,为HNSCC的治疗提供新的依据。

     

    Abstract:

    Squamous cell carcinoma of the head and neck (HNSCC) is one of the cancers with the highest incidence rate in the world. Due to the presence of postoperative recurrence and resistance to some chemotherapeutics after the surgery, the prognosis of advanced HNSCC patients is not optimistic. Therefore, it is urgent to improve the efficiency of chemotherapeutics for HNSCC and the prognosis of HNSCC patients. Recent studies have found that ferroptosis has regulatory effect on the growth and proliferation of some types of tumor cells, reducing drug resistance in tumor treatment to a certain extent, and showing great potential in the prevention and treatment of tumors. Therefore, this article will summarize the anti-tumor mechanism of ferroptosis and the current research progress in HNSCC, providing new evidence for the treatment of HNSCC.

     

  • Competing interests: The authors declare that they have no competing interests.
    作者贡献:
    谢章弘:文献调研整理、论文构思及撰写
    华清泉:文献指导、校对及修改
  • [1]

    Ferlay J, Colombet M, Soerjomataram I, et al. Cancer statistics for the year 2020: An overview[J]. Int J Cancer, 2021, 149(4): 778-789. doi: 10.1002/ijc.33588

    [2]

    Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660

    [3]

    Kim YJ, Kim JH. Increasing incidence and improving survival of oral tongue squamous cell carcinoma[J]. Sci Rep, 2020, 10(1): 7877. doi: 10.1038/s41598-020-64748-0

    [4]

    Siegel RL, Miller KD, Fuchs HE, et al. Cancer Statistics, 2021[J]. CA Cancer J Clin, 2021, 71(1): 7-33. doi: 10.3322/caac.21654

    [5]

    Lenze NR, Farquhar DR, Dorismond C, et al. Age and risk of recurrence in oral tongue squamous cell carcinoma: Systematic review[J]. Head Neck, 2020, 42(12): 3755-3768. doi: 10.1002/hed.26464

    [6]

    Roh JL, Kim EH, Jang HJ, et al. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer[J]. Cancer Lett, 2016, 381(1): 96-103. doi: 10.1016/j.canlet.2016.07.035

    [7]

    Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death[J]. Cell, 2012, 149(5): 1060-1072. doi: 10.1016/j.cell.2012.03.042

    [8]

    Chen X, Li J, Kang R, et al. Ferroptosis: machinery and regulation[J]. Atophagy, 2020, 17(9): 2054-2081.

    [9]

    Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy[J]. Protein Cell, 2021, 12(8): 599-620. doi: 10.1007/s13238-020-00789-5

    [10]

    Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5): 280-296. doi: 10.1038/s41571-020-00462-0

    [11]

    Tang D, Chen X, Kang R, et al. Ferroptosis: molecular mechanisms and health implications[J]. Cell Res, 2021, 31(2): 107-125. doi: 10.1038/s41422-020-00441-1

    [12]

    Chen X, Kang R, Kroemer G, et al. Targeting ferroptosis in pancreatic cancer: a double-edged sword[J]. Trends Cancer, 2021, 7(10): 891-901. doi: 10.1016/j.trecan.2021.04.005

    [13]

    Sui X, Zhang R, Liu S, et al. RSL3 Drives Ferroptosis Through GPX4 Inactivation and ROS Production in Colorectal Cancer[J]. Front Pharmacol, 2018, 9: 1371. doi: 10.3389/fphar.2018.01371

    [14]

    Bogdan AR, Miyazawa M, Hashimoto K, et al. Regulators of Iron Homeostasis: New Players in Metabolism, Cell Death, and Disease[J]. Trends Biochem Sci, 2016, 41(3): 274-286. doi: 10.1016/j.tibs.2015.11.012

    [15]

    Yang WS, Stockwell BR. Ferroptosis: Death by Lipid Peroxidation[J]. Trends Cell Biol, 2016, 26(3): 165-176. doi: 10.1016/j.tcb.2015.10.014

    [16]

    Kagan VE, Mao G, Qu F, et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis[J]. Nat Chem Biol, 2017, 13(1): 81-90. doi: 10.1038/nchembio.2238

    [17]

    Chu B, Kon N, Chen D, et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway[J]. Nat Cell Biol, 2019, 21(5): 579-591. doi: 10.1038/s41556-019-0305-6

    [18]

    Magtanong L, Ko PJ, To M, et al. Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State[J]. Cell Chem Biol, 2019, 26(3): 420-432. e9. doi: 10.1016/j.chembiol.2018.11.016

    [19]

    Yan B, Ai Y, Sun Q, et al. Membrane Damage during Ferroptosis Is Caused by Oxidation of Phospholipids Catalyzed by the Oxidoreductases POR and CYB5R1[J]. Mol Cell, 2021, 81(2): 355-369. e10. doi: 10.1016/j.molcel.2020.11.024

    [20]

    Shimada K, Skouta R, Kaplan A, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis[J]. Nat Chem Biol, 2016, 12(7): 497-503. doi: 10.1038/nchembio.2079

    [21]

    Bersuker K, Hendricks JM, Li Z, et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575(7784): 688-692. doi: 10.1038/s41586-019-1705-2

    [22]

    Dai E, Meng L, Kang R, et al. ESCRT-Ⅲ-dependent membrane repair blocks ferroptosis[J]. Biochem Biophys Res Commun, 2020, 522(2): 415-421. doi: 10.1016/j.bbrc.2019.11.110

    [23]

    Kraft VAN, Bezjian CT, Pfeiffer S, et al. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling[J]. ACS Cent Sci, 2020, 6(1): 41-53. doi: 10.1021/acscentsci.9b01063

    [24]

    Li B, Yang L, Peng X, et al. Emerging mechanisms and applications of ferroptosis in the treatment of resistant cancers[J]. Biomed Pharmacother, 2020, 130: 110710. doi: 10.1016/j.biopha.2020.110710

    [25]

    Wang H, Liu C, Zhao Y, et al. Inhibition of LONP1 protects against erastin-induced ferroptosis in Pancreatic ductal adenocarcinoma PANC1 cells[J]. Biochem Biophys Res Commun, 2020, 522(4): 1063-1068. doi: 10.1016/j.bbrc.2019.11.187

    [26]

    Zou Y, Palte MJ, Deik AA, et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis[J]. Nat Commun, 2019, 10(1): 1617. doi: 10.1038/s41467-019-09277-9

    [27]

    Yang WH, Chi JT. Hippo pathway effectors YAP/TAZ as novel determinants of ferroptosis[J]. Mol Cell Oncol, 2020, 7(1): 1699375. doi: 10.1080/23723556.2019.1699375

    [28]

    Müller S, Sindikubwabo F, Cañeque T, et al. CD44 regulates epigenetic plasticity by mediating iron endocytosis[J]. Nat Chem, 2020, 12(10): 929-938. doi: 10.1038/s41557-020-0513-5

    [29]

    Yu W, Chen Y, Putluri N, et al. Acquisition of Cisplatin Resistance Shifts Head and Neck Squamous Cell Carcinoma Metabolism toward Neutralization of Oxidative Stress[J]. Cancers(Basel), 2020, 12(6): 1670.

    [30]

    Ma Z, Zhang H, Lian M, et al. SLC7A11, a component of cysteine/glutamate transporter, is a novel biomarker for the diagnosis and prognosis in laryngeal squamous cell carcinoma[J]. Oncol Rep, 2017, 38(5): 3019-3029. doi: 10.3892/or.2017.5976

    [31]

    Hémon A, Louandre C, Lailler C, et al. SLC7A11 as a biomarker and therapeutic target in HPV-positive head and neck Squamous Cell Carcinoma[J]. Biochem Biophys Res Commun, 2020, 533(4): 1083-1087. doi: 10.1016/j.bbrc.2020.09.134

    [32]

    Yoshikawa M, Tsuchihashi K, Ishimoto T, et al. xCT Inhibition Depletes CD44v-Expressing Tumor Cells That Are Resistant to EGFR-Targeted Therapy in Head and Neck Squamous Cell Carcinoma[J]. Cancer Res, 2013, 73(6): 1855-1866. doi: 10.1158/0008-5472.CAN-12-3609-T

    [33]

    Okazaki S, Shintani S, Hirata Y, et al. Synthetic lethality of the ALDH3A1 inhibitor dyclonine and xCT inhibitors in glutathione deficiency-resistant cancer cells[J]. Oncotarget, 2018, 9(73): 33832-33843. doi: 10.18632/oncotarget.26112

    [34]

    Otsuki Y, Yamasaki J, Suina K, et al. Vasodilator oxyfedrine inhibits aldehyde metabolism and thereby sensitizes cancer cells to xCT-targeted therapy[J]. Cancer Sci, 2020, 111(1): 127-136. doi: 10.1111/cas.14224

    [35]

    Roh JL, Kim EH, Jang H, et al. Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition[J]. Free Radic Biol Med, 2017, 104: 1-9. doi: 10.1016/j.freeradbiomed.2017.01.002

    [36]

    Zhu T, Shi L, Yu C, et al. Ferroptosis Promotes Photodynamic Therapy: Supramolecular Photosensitizer-Inducer Nanodrug for Enhanced Cancer Treatment[J]. Theranostics, 2019, 9(11): 3293-3307. doi: 10.7150/thno.32867

    [37]

    Lin YH, Chiu V, Huang CY, et al. Promotion of Ferroptosis in Oral Cancer Cell Lines by Chrysophanol[J]. Curr Top Nutraceutical Res, 2019, 18(3): 273-276. doi: 10.37290/ctnr2641-452X.18:273-276

    [38]

    Zhu S, Yu Q, Huo C, et al. Ferroptosis: A Novel Mechanism of Artemisinin and its Derivatives in Cancer Therapy[J]. Curr Med Chem, 2021, 28(2): 329-345.

    [39]

    Lin R, Zhang Z, Chen L, et al. Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells[J]. Cancer Lett, 2016, 381(1): 165-175. doi: 10.1016/j.canlet.2016.07.033

    [40]

    Shin D, Kim EH, Lee J, et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer[J]. Free Radic Biol Med, 2018, 129: 454-462. doi: 10.1016/j.freeradbiomed.2018.10.426

    [41]

    Roh JL, Kim EH, Jang H, Shin D. Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis[J]. Redox Biol, 2017, 11: 254-262. doi: 10.1016/j.redox.2016.12.010

    [42]

    Raudenská M, Balvan J, Masařík M. Cell death in head and neck cancer pathogenesis and treatment[J]. Cell Death Dis, 2021, 12(2): 192. doi: 10.1038/s41419-021-03474-5

    [43]

    Sun X, Ou Z, Xie M, et al. HSPB1 as a novel regulator of ferroptotic cancer cell death[J]. Oncogene, 2015, 34(45): 5617-5625. doi: 10.1038/onc.2015.32

    [44]

    Mittler R, Darash-Yahana M, Sohn YS, et al. NEET Proteins: A New Link Between Iron Metabolism, Reactive Oxygen Species, and Cancer[J]. Antioxid Redox Signal, 2019, 30(8): 1083-1095. doi: 10.1089/ars.2018.7502

    [45]

    Lee J, You JH, Shin D, et al. Inhibition of Glutaredoxin 5 predisposes Cisplatin-resistant Head and Neck Cancer Cells to Ferroptosis[J]. Theranostics, 2020, 10(17): 7775-7786. doi: 10.7150/thno.46903

    [46]

    Kim EH, Shin D, Lee J, et al. CISD2 inhibition overcomes resistance to sulfasalazine-induced ferroptotic cell death in head and neck cancer[J]. Cancer Lett, 2018, 432: 180-190. doi: 10.1016/j.canlet.2018.06.018

    [47]

    Wang X, Liu K, Gong H, et al. Death by histone deacetylase inhibitor quisinostat in tongue squamous cell carcinoma via apoptosis, pyroptosis, and ferroptosis[J]. Toxicol Appl Pharmacol, 2021, 410: 115363. doi: 10.1016/j.taap.2020.115363

    [48]

    Miyazaki H, Takahashi RU, Prieto-Vila M, et al. CD44 exerts a functional role during EMT induction in cisplatin-resistant head and neck cancer cells[J]. Oncotarget, 2018, 9(11): 10029-10041. doi: 10.18632/oncotarget.24252

    [49]

    Ye J, Jiang X, Dong Z, et al. Low-Concentration PTX And RSL3 Inhibits Tumor Cell Growth Synergistically By Inducing Ferroptosis In Mutant p53 Hypopharyngeal Squamous Carcinoma[J]. Cancer Manag Res, 2019, 11: 9783-9792. doi: 10.2147/CMAR.S217944

    [50]

    Han F, Li W, Chen T, et al. Ferroptosis-related genes for predicting prognosis of patients with laryngeal squamous cell carcinoma[J]. Eur Arch Otorhinolaryngol, 2021, 278(8): 2919-2925. doi: 10.1007/s00405-021-06789-3

    [51]

    He F, Chen Z, Deng W, et al. Development and validation of a novel ferroptosis-related gene signature for predicting prognosis and immune microenvironment in head and neck squamous cell carcinoma[J]. Int Immunopharmacol, 2021, 98: 107789. doi: 10.1016/j.intimp.2021.107789

    [52]

    Tang Y, Li C, Zhang YJ, et al. Ferroptosis-Related Long Non-Coding RNA signature predicts the prognosis of Head and neck squamous cell carcinoma[J]. Int J Biol Sci, 2021, 17(3): 702-711. doi: 10.7150/ijbs.55552

计量
  • 文章访问数:  2464
  • HTML全文浏览量:  570
  • PDF下载量:  1073
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-29
  • 修回日期:  2022-02-20
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2022-04-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭