高级搜索

B细胞淋巴瘤的免疫治疗现状

付永亮, 黄文亭

付永亮, 黄文亭. B细胞淋巴瘤的免疫治疗现状[J]. 肿瘤防治研究, 2022, 49(2): 159-162. DOI: 10.3971/j.issn.1000-8578.2022.21.0857
引用本文: 付永亮, 黄文亭. B细胞淋巴瘤的免疫治疗现状[J]. 肿瘤防治研究, 2022, 49(2): 159-162. DOI: 10.3971/j.issn.1000-8578.2022.21.0857
FU Yongliang, HUANG Wenting. Current Status of Immunotherapy for B-cell Lymphoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(2): 159-162. DOI: 10.3971/j.issn.1000-8578.2022.21.0857
Citation: FU Yongliang, HUANG Wenting. Current Status of Immunotherapy for B-cell Lymphoma[J]. Cancer Research on Prevention and Treatment, 2022, 49(2): 159-162. DOI: 10.3971/j.issn.1000-8578.2022.21.0857

B细胞淋巴瘤的免疫治疗现状

基金项目: 

深圳市医疗卫生三名工程项目 SZSM201812076

详细信息
    作者简介:

    付永亮(1988-),男,硕士在读,医师,主要从事淋巴瘤的研究

    通信作者:

    黄文亭(1977-),女,博士,主任医师,主要从事淋巴瘤的研究,E-mail: huangwt@cicams.ac.cn

  • 中图分类号: R733

Current Status of Immunotherapy for B-cell Lymphoma

Funding: 

Sanming Projfect of Medicine in Shenzhen SZSM201812076

More Information
  • 摘要:

    尽管以R-CHOP为代表的一线治疗方案在B细胞淋巴瘤中起到了很好的疗效,但仍有部分患者复发及进展。随着肿瘤免疫治疗时代的到来,B细胞淋巴瘤的免疫治疗得到了迅速发展,包括免疫检查点抑制剂、嵌合抗原受体细胞(CAR-cell)、肿瘤微环境调控等。本文就B细胞淋巴瘤的免疫治疗现状进行综述。

     

    Abstract:

    Although the first-line treatment regimens represented by R-CHOP have shown good efficacy in B-cell lymphoma, there are still some patients with recurrence and progression. With the advent of the era of tumor immunotherapy, the immunotherapy of B-cell lymphoma has been rapidly developed, including immune checkpoint inhibitors, CAR-cell, tumor microenvironment regulation, etc. This article reviews the current status of immunotherapy of B-cell lymphoma.

     

  • Competing interests: The authors declare that they have no competing interests.
    作者贡献:
    付永亮:查阅、整理文献;文章撰写及修改
    黄文亭:指导文章撰写及修改
  • [1]

    Mondello P, Mian M. Frontline treatment of diffuse large B-cell lymphoma: Beyond R-CHOP[J]. Hematol Oncol, 2019, 37(4): 333-344. doi: 10.1002/hon.2613

    [2]

    Schmitz R, Wright GW, Huang DW, et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma[J]. N Engl J Med, 2018, 378(15): 1396-1407. doi: 10.1056/NEJMoa1801445

    [3]

    Wang L, Li LR. R-CHOP resistance in diffuse large B-cell lymphoma: biological and molecular mechanisms[J]. Chin Med J (Engl), 2020, 134(3): 253-260.

    [4]

    Kesavan M, Eyre TA, Collins GP. Front-Line Treatment of High Grade B Cell Non-Hodgkin Lymphoma[J]. Curr Hematol Malig Rep, 2019, 14(4): 207-218. doi: 10.1007/s11899-019-00518-8

    [5]

    Bröckelmann PJ, de Jong MRW, Jachimowicz RD. Targeting DNA Repair, Cell Cycle, and Tumor Microenvironment in B Cell Lymphoma[J]. Cells, 2020, 9(10): 2287. doi: 10.3390/cells9102287

    [6]

    Zhang Y, Zheng J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion[J]. Adv Exp Med Biol, 2020, 1248: 201-226.

    [7]

    Armengol M, Santos JC, Fernández-Serrano M, et al. Immune-Checkpoint Inhibitors in B-Cell Lymphoma[J]. Cancers (Basel), 2021, 13(2): 214. doi: 10.3390/cancers13020214

    [8]

    Gou Q, Dong C, Xu H, et al. PD-L1 degradation pathway and immunotherapy for cancer[J]. Cell Death Dis, 2020, 11(11): 955. doi: 10.1038/s41419-020-03140-2

    [9]

    Xie W, Medeiros LJ, Li S, et al. PD-1/PD-L1 Pathway and Its Blockade in Patients with Classic Hodgkin Lymphoma and Non-Hodgkin Large-Cell Lymphomas[J]. Curr Hematol Malig Rep, 2020, 15(4): 372-381. doi: 10.1007/s11899-020-00589-y

    [10]

    Cristino AS, Nourse J, West RA, et al. EBV microRNA-BHRF1-2-5p targets the 3'UTR of immune checkpoint ligands PD-L1 and PD-L2[J]. Blood, 2019, 134(25): 2261-2270. doi: 10.1182/blood.2019000889

    [11]

    Vincent-Fabert C, Roland L, Zimber-Strobl U, et al. Pre-clinical blocking of PD-L1 molecule, which expression is down regulated by NF-κB, JAK1/JAK2 and BTK inhibitors, induces regression of activated B-cell lymphoma[J]. Cell Commun Signal, 2019, 17(1): 89. doi: 10.1186/s12964-019-0391-x

    [12]

    Nayak L, Iwamoto FM, LaCasce A, et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma[J]. Blood, 2017, 129(23): 3071-3073. doi: 10.1182/blood-2017-01-764209

    [13]

    Sethi TK, Kovach AE, Grover NS, et al. Clinicopathologic correlates of MYD88L265P mutation and programmed cell death (PD-1) pathway in primary central nervous system lymphoma[J]. Leuk Lymphoma, 2019, 60(12): 2880-2889. doi: 10.1080/10428194.2019.1620942

    [14]

    Gravelle P, Burroni B, Péricart S, et al. Mechanisms of PD-1/PD-L1 expression and prognostic relevance in non-Hodgkin lymphoma: a summary of immunohistochemical studies[J]. Oncotarget, 2017, 8(27): 44960-44975. doi: 10.18632/oncotarget.16680

    [15]

    Pascual M, Mena-Varas M, Robles EF, et al. PD-1/PD-L1immune checkpoint and p53 loss facilitate tumor progression in activated B-cell diffuse large B-cell lymphomas[J]. Blood, 2019, 133(22): 2401-2412. doi: 10.1182/blood.2018889931

    [16]

    Suzuki Y, Kohno K, Matsue K, et al. PD-L1 (SP142) expression in neoplastic cells predicts a poor prognosis for patients with intravascular large B-cell lymphoma treated with rituximab-based multi-agent chemotherapy[J]. CancerMed, 2020, 9(13): 4768-4776.

    [17]

    Kiyasu J, Miyoshi H, Hirata A, et al. Expression of programmed cell death ligand 1 is associated with poor overall survival in patients with diffuse large B-cell lymphoma[J]. Blood, 2015, 126(19): 2193-2201. doi: 10.1182/blood-2015-02-629600

    [18]

    Wei T, Li M, Zhu Z, et al. Vincristine upregulates PD-L1 and increases the efficacy of PD-L1 blockade therapy in diffuse large B-cell lymphoma[J]. J Cancer Res Clin Oncol, 2021, 147(3): 691-701. doi: 10.1007/s00432-020-03446-w

    [19]

    Wang J, Shang S, Li J, et al. PD-L1 and miR-34a are Prognostic Factors for Primary Gastric Diffuse Large B-Cell Lymphoma Patients Treated with R-CHOP[J]. Cancer Manag Res, 2020, 12: 4999-5008. doi: 10.2147/CMAR.S247874

    [20]

    Xie W, Medeiros LJ, Li S, et al. PD-1/PD-L1 Pathway and Its Blockade in Patients with Classic Hodgkin Lymphoma and Non-Hodgkin Large-Cell Lymphomas[J]. Curr Hematol Malig Rep, 2020, 15(4): 372-381. doi: 10.1007/s11899-020-00589-y

    [21]

    Lesokhin AM, Ansell SM, Armand P, et al. Nivolumab in Patients With Relapsed or RefractoryHematologic Malignancy: Preliminary Results of a Phase Ⅰb Study[J]. J Clin Oncol, 2016, 34(23): 2698-2704. doi: 10.1200/JCO.2015.65.9789

    [22]

    Ansell SM, Minnema MC, Johnson P, et al. Nivolumab for Relapsed/Refractory Diffuse Large B-Cell Lymphoma in Patients Ineligible for or Having Failed Autologous Transplantation: A Single-Arm, Phase Ⅱ Study[J]. J Clin Oncol, 2019, 37(6): 481-489. doi: 10.1200/JCO.18.00766

    [23]

    Chong EA, Melenhorst JJ, Lacey SF, et al. PD-1 blockade modulates chimeric antigen receptor (CAR)-modified T cells: refueling the CAR[J]. Blood, 2017, 129(8): 1039-1041. doi: 10.1182/blood-2016-09-738245

    [24]

    Wang L, Li LR, Young KH. New agents and regimens for diffuse large B cell lymphoma[J]. J Hematol Oncol, 2020, 13(1): 175. doi: 10.1186/s13045-020-01011-z

    [25]

    Goy A, Ramchandren R, Ghosh N, et al. Ibrutinib plus lenalidomide and rituximab has promising activity in relapsed/refractory non-germinal center B-cell-like DLBCL[J]. Blood, 2019, 134(13): 1024-1036. doi: 10.1182/blood.2018891598

    [26]

    Nowakowski GS, Hong F, Scott DW, et al. Addition of Lenalidomide to R-CHOP Improves Outcomes in Newly Diagnosed Diffuse Large B-Cell Lymphoma in a Randomized Phase Ⅱ US Intergroup Study ECOG-ACRIN E1412[J]. J Clin Oncol, 2021, 39(1): 1329-1338.

    [27]

    De Silva P, Aiello M, Gu-Trantien C, et al. Targeting CTLA-4 in cancer: Is it the ideal companion for PD-1 blockade immunotherapy combinations?[J]. Cancer, 2021, 149(1): 31-41.

    [28]

    Etxeberria I, Glez-Vaz J, Teijeira Á, et al. New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis[J]. ESMO Open, 2020, 4(Suppl 3): e000733.

    [29]

    Huang R, Li X, He Y, et al. Recent advances in CAR-T cell engineering[J]. J Hematol Oncol, 2020, 13(1): 86. doi: 10.1186/s13045-020-00910-5

    [30]

    Jain T, Bar M, Kansagra AJ, et al. Use of Chimeric Antigen Receptor T Cell Therapy in Clinical Practice for Relapsed/Refractory Aggressive B Cell Non-Hodgkin Lymphoma: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy[J]. Biol Blood Marrow Transplant, 2019, 25(12): 2305-2321. doi: 10.1016/j.bbmt.2019.08.015

    [31]

    Abramson JS, Palomba ML, Gordon LI, et al. Pivotal safety and efficacy results from Transcend NHL 001, a multicenter phase 1 study of lisocabtagene maraleucel (liso-cel) in relapsed/refractory (R/R) large B cell lymphomas[J]. Blood, 2019, 134(Supplement_1): 241. doi: 10.1182/blood-2019-127508

    [32]

    Liu E, Marin D, Banerjee P, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors[J]. N Engl J Med, 2020, 382(6): 545-553. doi: 10.1056/NEJMoa1910607

    [33]

    McKee SJ, Doff BL, Soon MS, et al. Therapeutic Efficacy of 4-1BB Costimulation Is Abrogated by PD-1 Blockade in a Model of Spontaneous B-cell Lymphoma[J]. Cancer Immunol Res, 2017, 5(3): 191-197. doi: 10.1158/2326-6066.CIR-16-0249

    [34]

    Roussel M, Lhomme F, Roe CE, et al. Mass cytometry defines distinct immune profile in germinal center B-cell lymphomas[J]. Cancer Immunol Immunother, 2020, 69(3): 407-420. doi: 10.1007/s00262-019-02464-z

计量
  • 文章访问数:  2453
  • HTML全文浏览量:  655
  • PDF下载量:  376
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-09-21
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2022-02-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭