高级搜索

结直肠癌免疫检查点治疗的研究进展

曹奇华, 许燕波, 徐栋

曹奇华, 许燕波, 徐栋. 结直肠癌免疫检查点治疗的研究进展[J]. 肿瘤防治研究, 2021, 48(3): 229-233. DOI: 10.3971/j.issn.1000-8578.2021.20.1060
引用本文: 曹奇华, 许燕波, 徐栋. 结直肠癌免疫检查点治疗的研究进展[J]. 肿瘤防治研究, 2021, 48(3): 229-233. DOI: 10.3971/j.issn.1000-8578.2021.20.1060
CAO Qihua, XU Yanbo, XU Dong. Research Progress of Immune Checkpoint Therapy on Colorectal Cancer[J]. Cancer Research on Prevention and Treatment, 2021, 48(3): 229-233. DOI: 10.3971/j.issn.1000-8578.2021.20.1060
Citation: CAO Qihua, XU Yanbo, XU Dong. Research Progress of Immune Checkpoint Therapy on Colorectal Cancer[J]. Cancer Research on Prevention and Treatment, 2021, 48(3): 229-233. DOI: 10.3971/j.issn.1000-8578.2021.20.1060

结直肠癌免疫检查点治疗的研究进展

详细信息
    作者简介:

    曹奇华(1993-),男,硕士在读,主要从事结直肠癌基础与临床研究

    徐栋  医学博士、主任医师、硕士研究生导师、博士研究生导师组成员,浙江大学医学院附属第二医院大肠外科副主任、大肠肿瘤中心MDT团队核心成员、余杭院区肛肠科执行主任。主要从事结直肠癌腹腔镜微创手术、消化道肿瘤的遗传筛查、胃肠道手术快速康复、肛周盆底疾病的个体化治疗等临床和科研工作。2013—2014年赴美国德州医学中心Methodist医院进行消化道肿瘤博士后学习。担任中国抗癌协会大肠癌专委会遗传学组副组长,中国抗癌协会肿瘤支持外科专委会副主任委员,中国医师协会MDT青委会委员,浙江抗癌协会青年理事会副秘书长,浙江省抗癌协会大肠癌专委会委员,浙江省抗癌协会大肠癌专委会副主任青年委员,浙江抗癌协会抗癌药物专委会副主任青年委员,浙江省数理医学会结直肠肿瘤青委会副主任委员。主持及共同主持国家自然科学基金课题4项,主持及作为主要成员参与浙江省自然科学基金4项,并主持厅级课题多项。以第一作者和通信作者名义在OncoTarget, Annals of Oncology, Cancer Letters, Int J Oncology, World J Surg Oncol等SCI收录期刊及国内核心期刊发表学术论文多篇。担任PLoS One, Int J Oncology等多家国际学术期刊特约审稿人

    通信作者:

    徐栋(1979-),男,博士,主任医师,主要从事结直肠癌早诊早治、外科治疗等临床和科研工作,E-mail: xudongzju@zju.edu.cn

  • 中图分类号: R735.3

Research Progress of Immune Checkpoint Therapy on Colorectal Cancer

More Information
  • 摘要:

    目前免疫治疗正在非小细胞肺癌、黑色素瘤、膀胱癌等各个瘤种中如火如荼地开展,其治疗方法也多种多样,包括肿瘤疫苗治疗、过继性T细胞疗法、免疫检查点抑制剂治疗等,但目前结直肠癌免疫治疗主要集中于免疫检查点抑制剂(PD-1/PD-L1及CTLA-4抑制剂等)。自从PD-1/PD-L1抑制剂在dMMR/MSI-H晚期结直肠癌患者上表现出较好的疗效以来,免疫检查点抑制剂在结直肠癌领域获得了越来越多的关注,治疗方案也从晚期后线治疗逐渐移至一线治疗或新辅助治疗并获得了成功,本文就近年来国内外结直肠癌免疫检查点治疗的研究进展作一综述。

     

    Abstract:

    At present, immunotherapy is in full swing in the treatment of non-small cell lung cancer, melanoma, bladder cancer and other tumor species, and its treatment methods are also diverse, including tumor vaccine treatment, adoptive T cell therapy, immune checkpoint inhibitor treatment, etc, but current immunotherapy for colorectal cancer mainly focuses on immune checkpoint inhibitors (PD-1/PD-L1 and CTLA-4 inhibitors). Since PD-1/PD-L1 inhibitors have shown amazing efficacy in patients with dMMR/MSI-H advanced colorectal cancer, immune checkpoint inhibitors have gained more and more attention in the field of colorectal cancer, and the treatment options have gradually shifted from late line treatment to first-line treatment or neoadjuvant therapy, and have achieved success. This paper summarizes the research progress of immune checkpoint therapy on colorectal cancer.

     

  • Competing interests: The authors declare that they have no competing interests.
    作者贡献
    曹奇华:文章内容构思、文献搜集、数据解释及文章撰写
    许燕波:文献搜集、协助文章撰写
    徐栋:文章的设计和指导
  • [1]

    Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66(2): 115-132. doi: 10.3322/caac.21338

    [2]

    Quiroga D, Lyerly HK, Morse MA. Deficient mismatch repair and the role of immunotherapy in metastatic colorectal cancer[J]. Curr Treat Options Oncol, 2016, 17(8): 41. doi: 10.1007/s11864-016-0414-4

    [3]

    Le DT, Uram JN, Wang H, et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade[J]. Science, 2017, 357(6349) : 409-413. doi: 10.1126/science.aan6733

    [4]

    Gelsomino F, Barbolini M, Spallanzani A, et al. The evolving role of microsatellite instability in colorectal cancer: A review[J]. Cancer Treat Rev, 2016, 51: 19-26. doi: 10.1016/j.ctrv.2016.10.005

    [5]

    Tougeron D, Fauquembergue E, Rouquette A, et al. Tumor infiltrating lymphocytes in colorectal cancers with microsatellite instability are correlated with the number and spectrum of frame shift mutations[J]. Mod Pathol, 2009, 22(9): 1186-1195. doi: 10.1038/modpathol.2009.80

    [6]

    Smyrk TC, Watson P, Kaul K, et al. Tumor-infifiltrating lymphocytes are a marker for microsatellite instability in colorectal carcinoma[J]. Cancer, 2001, 91(12): 2417-2422. doi: 10.1002/1097-0142(20010615)91:12<2417::AID-CNCR1276>3.0.CO;2-U

    [7] 汤国军, 胡丛岗, 童骎, 等. 程序性死亡配体1在结直肠癌中的表达及作用[J]. 中国普通外科杂志, 2018, 27(6): 792-795. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPWZ201806027.htm

    Tang GJ, Hu CG, Tong Q, et al. Expression and effect of programmed cell death ligand-1 in colorectal cancer[J]. Zhongguo Pu Tong Wai Ke Za Zhi, 2018, 27(6): 792-795. https://www.cnki.com.cn/Article/CJFDTOTAL-ZPWZ201806027.htm

    [8]

    Gatalica Z, Snyder CL, Yeatts K, et al. Programmed death 1 (PD-1) lymphocytes and ligand (PD-L1) in colorectal cancer and their relationship to microsatellite instability status[EB/OL]. (2014-05-31). http://meetinglibrary.asco.org/content/133958-144.

    [9]

    Le DT, Kim TW, Cutsem EV, et al. Phase Ⅱ Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability–High/Mismatch Repair–Deficient Metastatic Colorectal Cancer: KEYNOTE-164[J]. J Clin Oncol, 2020, 38(1): 11-19. doi: 10.1200/JCO.19.02107

    [10]

    Fukuoka S, Hara H, Takahashi N, et al. Regorafenib Plus Nivolumab in Patients With Advanced Gastric or Colorectal Cancer: An Open-Label, Dose-Escalation, and Dose-Expansion Phase Ib Trial (REGONIVO, EPOC1603)[J]. J Clin Oncol, 2020, 38(18): 2053-2061. doi: 10.1200/JCO.19.03296

    [11]

    Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18(9): 1182-1191. doi: 10.1016/S1470-2045(17)30422-9

    [12]

    Overman MJ, Lonardi S, Wang KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer[J]. J Clin Oncol, 2018, 36(8): 773-779. doi: 10.1200/JCO.2017.76.9901

    [13]

    André T, Shiu KK, Kim TW, et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer[J]. N Engl J Med, 2020, 383(23): 2207-2218. doi: 10.1056/NEJMoa2017699

    [14]

    Forde PM, Chaft JE, Smith KN, et al. Neoadjuvant PD-1 Blockade in Resectable Lung Cancer[J]. N Engl J Med, 2018, 378(21): 1976-1986. doi: 10.1056/NEJMoa1716078

    [15]

    Cascone T,  William WN, Weissferdt A, et al. Neoadjuvant nivolumab (N) or nivolumab plus ipilimumab (NI) for resectable non-small cell lung cancer (NSCLC)[J]. J Clin Oncol, 2018, 29 (suppl_ 8): viii738. http://www.sciencedirect.com/science/article/pii/S0923753419504501

    [16]

    Provencio-Pulla M, Nadal-Alforja E, Cobo M, et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial[EB/OL]. (2020-09-24). https://sci-hub.se/10.1016/S1470-2045(20)30453-8

    [17]

    Huang AC, Orlowski RJ, Xu X, et al. A single dose of neoadjuvant PD-1 blockade predicts clinical outcomes in resectable melanoma[J]. Nat Med, 2019, 25(3): 454-461. doi: 10.1038/s41591-019-0357-y

    [18]

    Hanna GJ, Adkins DR, Zolkind P, et al. Rationale for neoadjuvant immunotherapy in head and neck squamous cell carcinoma[J]. Oral Oncol, 2017, 73: 65-69. doi: 10.1016/j.oraloncology.2017.08.008

    [19]

    Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma[J]. Nat Med, 2019, 25(3): 477-486. doi: 10.1038/s41591-018-0337-7

    [20]

    Necchi A, Anichini A, Raggi D, et al. Pembrolizumab as Neoadjuvant Therapy Before Radical Cystectomy in Patients With Muscle-Invasive Urothelial Bladder Carcinoma (PURE-01): An Open-Label, Single-Arm, Phase Ⅱ Study[J]. J Clin Oncol, 2018, 36(34): 3353-3360. doi: 10.1200/JCO.18.01148

    [21]

    Keung EZ, Ukponmwan EU, Cogdill AP, et al. The rationale and emerging use of neoadjuvant immune checkpoint blockade for solid malignancies[J]. Ann Surg Oncol, 2018, 25(7): 1814-1827. doi: 10.1245/s10434-018-6379-8

    [22]

    Melero I, Berraondo P, Rodriguez-Ruiz ME, et al. Making the most of cancer surgery with neoadjuvant immunotherapy[J]. Cancer Discov, 2016, 6(12): 1312-1314. doi: 10.1158/2159-8290.CD-16-1109

    [23]

    Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576. doi: 10.1038/s41591-020-0805-8

    [24]

    Cottrell TR, Thompson ED, Forde PM, et al. Pathologic features of response to neoadjuvant anti-PD-1 in resected non-small-cell lung carcinoma: a proposal for quantitative immune-related pathologic response criteria (irPRC)[J]. Ann Oncol, 2018, 29(8): 1853-1860. doi: 10.1093/annonc/mdy218

    [25]

    Thommen DS, Koelzer VH, Petra H, et al. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade[J]. Nat Med, 2018, 24(7): 994-1004. doi: 10.1038/s41591-018-0057-z

    [26] 刘兆辉, 张磊, 徐小平, 等. 转移性大肠癌免疫治疗的现状[J]. 肿瘤防治研究, 2020, 47(12): 925-930. doi: 10.3971/j.issn.1000-8578.2020.20.0864

    Liu ZH, Zhang L, Xu XP, et al. Current Status of Immunotherapy for Metastatic Colorectal Cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2020, 47(12): 925-930. doi: 10.3971/j.issn.1000-8578.2020.20.0864

计量
  • 文章访问数:  2305
  • HTML全文浏览量:  747
  • PDF下载量:  1542
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 修回日期:  2020-11-26
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2021-03-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭