高级搜索

肿瘤患者静脉血栓栓塞症的风险评估模型及其应用

韩森, 马旭, 方健

韩森, 马旭, 方健. 肿瘤患者静脉血栓栓塞症的风险评估模型及其应用[J]. 肿瘤防治研究, 2020, 47(11): 880-884. DOI: 10.3971/j.issn.1000-8578.2020.20.0099
引用本文: 韩森, 马旭, 方健. 肿瘤患者静脉血栓栓塞症的风险评估模型及其应用[J]. 肿瘤防治研究, 2020, 47(11): 880-884. DOI: 10.3971/j.issn.1000-8578.2020.20.0099
HAN Sen, MA Xu, FANG Jian. Risk Assessment Models of Venous Thromboembolism for Cancer Patients and Their Applications[J]. Cancer Research on Prevention and Treatment, 2020, 47(11): 880-884. DOI: 10.3971/j.issn.1000-8578.2020.20.0099
Citation: HAN Sen, MA Xu, FANG Jian. Risk Assessment Models of Venous Thromboembolism for Cancer Patients and Their Applications[J]. Cancer Research on Prevention and Treatment, 2020, 47(11): 880-884. DOI: 10.3971/j.issn.1000-8578.2020.20.0099

肿瘤患者静脉血栓栓塞症的风险评估模型及其应用

基金项目: 

北京大学肿瘤医院科学研究基金 2020-27

详细信息
    作者简介:

    韩森(1983-),男,博士,主治医师,主要从事肿瘤内科的临床研究工作

    马旭(1985-),女,博士,主管药师,主要从事临床药学相关工作

    通信作者:

    方健(1966-),男,硕士,主任医师,主要从事肺癌综合治疗的临床研究工作,E-mail: fangjian5555@163.com

    *:并列第一作者

  • 中图分类号: R730.6

Risk Assessment Models of Venous Thromboembolism for Cancer Patients and Their Applications

Funding: 

Science Foundation of Peking University Cancer Hospital 2020-27

More Information
    Corresponding author:

    FANG Jian, E-mail: fangjian5555@163.com

    *: Contributed Equally as the First Author

  • 摘要:

    静脉血栓栓塞症(VTE)是肿瘤患者常见的并发症和死亡原因。多项研究显示,有效的VTE风险评估模型和恰当的预防性抗凝治疗可以降低肿瘤患者的血栓发生风险。但哪些肿瘤患者需要进行预防性抗凝治疗,需要有效的VTE风险评估模型,对肿瘤患者进行VTE风险分层。对血栓高危人群,在排除抗凝禁忌证后进行预防性抗凝。但肿瘤疾病存在复杂性,不同的病理类型和分期,VTE风险和特点不同,而目前专门针对肿瘤患者的VTE风险评估模型仍然有限,本文将对肿瘤患者的VTE风险评估模型的现状及其应用进行综述。

     

    Abstract:

    Venous thromboembolism (VTE) is a common complication and death cause of cancer patients. Some studies have shown that effective VTE risk assessment model and appropriate preventive anticoagulation therapy can reduce the risk of thrombosis in cancer patients. But before patients start preventive anticoagulant treatment, they need an effective VTE risk assessment model to carry out VTE risk stratification. For the high-risk group of VTE patients, preventive anticoagulation should be carried out after eliminating the contraindications of anticoagulation. However, tumor diseases have complexity, different pathological types and stages are with different risks and characteristics of VTE. The current VTE risk assessment models for cancer patients are still limited. This paper mainly reviews the current situation and application of VTE risk assessment model for cancer patients.

     

  • Competing interests: The authors declare that they have no competing interests.
    作者贡献
    韩森:论文撰写和修改
    马旭:论文选题和文献资料收集整理
    方健:论文整体规划和审阅
  • 表  1   VTE的危险因素

    Table  1   Risk factors of venous thromboembolism (VTE)

    下载: 导出CSV

    表  2   Caprini评分量表

    Table  2   Caprini risk assessment model

    下载: 导出CSV

    表  3   Padua风险评分量表

    Table  3   Padua risk assessment model

    下载: 导出CSV

    表  4   Khorana血栓风险评估模型

    Table  4   Khorana thrombosis risk assessment model

    下载: 导出CSV
  • [1] 雷海科, 李小升, 龙波, 等.恶性肿瘤合并静脉血栓栓塞症患者的临床特点分析[J].肿瘤防治研究, 2020, 47(4): 256-261. doi: 10.3971/j.issn.1000-8578.2020.19.1185

    Lei HK, Li XS, Long B, et al. Clinical features of cancer patients with venous thromboembolism[J]. Zhong Liu Fang Zhi Yan Jiu, 2020, 47(4): 256-261. doi: 10.3971/j.issn.1000-8578.2020.19.1185

    [2]

    Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism[J]. J Thromb Thrombolysis, 2016, 41(1): 3-14. doi: 10.1007/s11239-015-1311-6

    [3]

    Noble S, Pasi J. Epidemiology and pathophysiology of cancer-associated thrombosis[J]. Br J Cancer, 2010, 102 Suppl 1: S2-S9.

    [4]

    Khorana AA. Venous thromboembolism and prognosis in cancer[J]. Thromb Res, 2010, 125(6): 490-493. doi: 10.1016/j.thromres.2009.12.023

    [5]

    Anderson FA, Spencer FA. Risk factors for venous thromboembolism[J]. Circulation, 2003, 107(23 Suppl): I9-16. http://www.biomedcentral.com/pubmed/12814980

    [6]

    Catovsky D, Ikoku NB, Pitney WR, et al. Thromboembolic complications in myelomatosis[J]. Br Med J, 1970, 3(5720): 438-439. doi: 10.1136/bmj.3.5720.438

    [7]

    Dimopoulos M, Spencer A, Attal M, et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma[J]. N Engl J Med, 2007, 357(21): 2123-2132. doi: 10.1056/NEJMoa070594

    [8]

    Osman K, Comenzo R, Rajkumar SV. Deep venous thrombosis and thalidomide therapy for multiple myeloma[J]. N Engl J Med, 2001, 344(25): 1951-1952. doi: 10.1056/NEJM200106213442516

    [9]

    Khorana AA, Francis CW, Culakova E, et al. Thromboembolism in hospitalized neutropenic cancer patients[J]. J Clin Oncol, 2006, 24(3): 484-490. doi: 10.1200/JCO.2005.03.8877

    [10]

    Caprini JA, Arcelus JI, Reyna JJ. Effective risk stratification of surgical and nonsurgical patients for venous thromboembolic disease[J]. Semin Hematol, 2001, 38(2 suppl 5): 12-19. http://qjmed.oxfordjournals.org/lookup/external-ref?access_num=11449339&link_type=MED&atom=%2Fqjmed%2F103%2F8%2F597.atom

    [11]

    Gould MK, Garcia DA, Wren SM, et al. Prevention of VTE in nonorthopedic surgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines[J]. Chest, 2012, 141(2 Suppl): e227S-e277S. http://europepmc.org/articles/PMC3278063

    [12]

    Zhou HX, Peng LQ, Yan Y, et al. Validation of the Caprini risk assessment model in Chinese hospitalized patients with venous thromboembolism[J]. Thromb Res, 2012, 130(5): 735-740. doi: 10.1016/j.thromres.2012.08.001

    [13]

    Bahl V, Hu HM, Henke PK, et al. A validation study of a retrospective venous thromboembolism risk scoring method[J]. Ann Surg, 2010, 251(2): 344-350. doi: 10.1097/SLA.0b013e3181b7fca6

    [14]

    Barbar S, Noventa F, Rossetto V, et al. A risk assessment model for the identifi cation of hospitalized medical patients at risk for venous thromboembolism: the Padua Prediction Score[J]. J Thromb Haemost, 2010, 8 (11): 2450-2457. doi: 10.1111/j.1538-7836.2010.04044.x

    [15]

    Kahn SR, Lim W, Dunn AS, et al. Prevention of VTE in nonsurgical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines[J]. Chest, 2012, 141(2 Suppl): e195S-e226S. http://europepmc.org/articles/PMC3278063

    [16] 陶俊荣, 宋红霞. Padua风险评估模型在预防内科住院患者静脉血栓栓塞症中的应用[J].中国实用护理杂志, 2018, 34(32): 2496-2501. http://d.old.wanfangdata.com.cn/Periodical_syhlzz201832004.aspx

    Tao JR, Song HX. Validate padua prediction score's ability to predict the risk of venous thromboembolism in medical inpatients[J]. Zhongguo Shi Yong Hu Li Za Zhi, 2018, 34(32): 2496-2501. http://d.old.wanfangdata.com.cn/Periodical_syhlzz201832004.aspx

    [17]

    Khorana AA, Kuderer NM, Culakova E, et al. Development and validation of a predictive model for chemotherapy-associated thrombosis[J]. Blood, 2008, 111(10): 4902-4907. doi: 10.1182/blood-2007-10-116327

    [18]

    Verso M, Agnelli G, Barni S, et al. A modified Khorana risk assessment score for venous thromboembolism in cancer patients receiving chemotherapy: the Protect score[J]. Intern Emerg Med, 2012, 7(3): 291-292. http://europepmc.org/abstract/MED/22547369

    [19]

    Ay C, Dunkler D, Marosi C, et al. Prediction of venous thromboembolism in cancer patients[J]. Blood, 2010, 116(24): 5377-5382. doi: 10.1182/blood-2010-02-270116

    [20]

    Cella CA, Di Minno G, Carlomagno C, et al. Preventing venous thromboembolism in ambulatory cancer patients: The ONKOTEV Study[J]. Oncologist, 2017, 22(5): 601-608. doi: 10.1634/theoncologist.2016-0246

    [21]

    Muñoz M, Ortega I, Font C, et al. Multivariable clinical-genetic risk model for predicting venous thromboembolic events in patients with cancer[J]. Br J Cancer, 2018, 118(8): 1056-1061. doi: 10.1038/s41416-018-0027-8

    [22]

    Pabinger I, van Es N, Heinze G, et al. A clinical prediction model for cancer-associated venous thromboembolism: A development and validation study in two independent prospective cohorts[J]. Lancet Haematol, 2018, 5(7): e289-e298. doi: 10.1016/S2352-3026(18)30063-2

    [23]

    Gerotziafas GT, Taher A, Abdel-Razeq H, et al. A predictive score for thrombosis associated with breast, colorectal, lung, or ovarian cancer: The Prospective COMPASS-Cancer-Associated Thrombosis Study[J]. Oncologist, 2017, 22(10): 1222-1231. doi: 10.1634/theoncologist.2016-0414

    [24]

    Khorana AA, Soff GA, Kakkar AK, et al. Rivaroxaban for thromboprophylaxis in high-risk ambulatory patients with cancer[J]. N Engl J Med, 2019, 380(8): 720-728. doi: 10.1056/NEJMoa1814630

    [25]

    Carrier M, Abou-Nassar K, Mallick R, et al. Apixaban to prevent venous thromboembolism in patients with cancer[J]. N Engl J Med, 2019, 380(8): 711-719. doi: 10.1056/NEJMoa1814468

    [26]

    Wang TF, Zwicker JI, Ay C, et al. The use of direct oral anticoagulants for primary thromboprophylaxis in ambulatory cancer patients: Guidance from the SSC of the ISTH[J]. J Thromb Haemost, 2019, 17(10): 1772-1778. doi: 10.1111/jth.14564

    [27]

    Noble S, Alikhan R, Robbins A, et al. Predictors of active cancer thromboembolic outcomes: Validation of the Khorana score among patients with lung cancer: Comment[J]. J Thromb Haemost, 2017, 15(3): 590-591. doi: 10.1111/jth.13594

    [28]

    Alexander M, Burbury K. A systematic review of biomarkers for the prediction of thromboembolism in lung cancer-Results, practical issues and proposed strategies for future risk prediction models[J]. Thromb Res, 2016, 148: 63-69. doi: 10.1016/j.thromres.2016.10.020

    [29]

    van Es N, Franke VF, Middeldorp S, et al. The Khorana score for the prediction of venous thromboembolism in patients with pancreatic cancer[J]. Thromb Res, 2017, 150: 30-32. doi: 10.1016/j.thromres.2016.12.013

    [30]

    Lustig DB, Rodriguez R, Wells PS. Implementation and validation of a risk stratification method at The Ottawa Hospital to guide thromboprophylaxis in ambulatory cancer patients at intermediate-high risk for venous thrombosis[J]. Thromb Res, 2015, 136(6): 1099-1102. doi: 10.1016/j.thromres.2015.08.002

    [31]

    Wu PY, Cheng CW, Kaddi CD, et al. -Omic and electronic health record Big Data analytics for precision medicine[J]. IEEE Trans Biomed Eng, 2017, 64(2): 263-273. doi: 10.1109/TBME.2016.2573285

    [32]

    Alonso SG, de la Torre Díez I, Rodrigues JJPC, et al. A systematic review of techniques and sources of Big Data in the healthcare sector[J]. J Med Syst, 2017, 41(11): 183. doi: 10.1007/s10916-017-0832-2

表(4)
计量
  • 文章访问数:  2885
  • HTML全文浏览量:  587
  • PDF下载量:  910
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-12
  • 修回日期:  2020-05-15
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2020-11-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭