-
摘要:
1920年Otto Warburg首次提出肿瘤细胞即使在氧气充足的情况下依旧以糖酵解方式提供能量。目前,越来越多的证据表明,肿瘤细胞的糖酵解通路与肿瘤的发生发展具有密切联系,靶向于糖酵解相关酶类及其转运体的药物可通过引起肿瘤周期阻滞,诱导肿瘤细胞凋亡,调节细胞自噬以及抑制肿瘤的转移等途径起到显著的抗肿瘤作用,大量的糖酵解相关酶类及转运体均可作为癌症治疗的候选靶标。本文主要讨论了近年来所报道的靶向于糖酵解途径药物的研究进展,并对其抗肿瘤作用加以总结和展望。
Abstract:In 1920 Otto Warburg firstly described that even in the presence of ample oxygen, cancer cells prefer to metabolize glucose by glycolysis, which named as "Warburg effect". There are growing evidence supporting that the glycolysis pathway of cancer cells is closely associated with the tumorigenesis and development. The drugs targeting glycolytic enzymes and transporters can have an obviously anti-tumor effect by inducing tumor cells cycle arrest, apoptosis, regulating the autophagy of cancer cells and inhibiting the metastasis of the tumor. Many glycolytic enzymes and transporters can be suitable candidate targets for cancer therapy. The review is focused on the inhibitors of glycolysis reported in recent years, summerizes and outlooks the anti-tumor effect of these drugs.
-
Key words:
- Metabolism /
- Glycolysis /
- Anti-tumor
-
-
[1] Warburg O. On respiratory impairment in cancer cells[J]. Science, 1956, 124(3215): 269-70.
[2] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-74. doi: 10.1016/j.cell.2011.02.013
[3] Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond[J]. Cell, 2008, 134(5): 703-7. doi: 10.1016/j.cell.2008.08.021
[4] Duronio RJ, Xiong Y. Signaling Pathways that Control Cell Proliferation[J]. Cold Spring Harb Perspect Biol, 2013, 5(3): a008904.
[5] Chhabria SV, Akbarsha MA, Li AP, et al. In situ allicin generation using targeted alliinase delivery for inhibition of MIA PaCa-2 cells via epigenetic changes, oxidative stress and cyclin-dependent kinase inhibitor (CDKI) expression[J]. Apoptosis, 2015, 20(10): 1388-409. doi: 10.1007/s10495-015-1159-4
[6] Cabarcas SM, Hurt EM, Farrar WL. Defining the Molecular Nexus of Cancer, Type 2 Diabetes and Cardiovascular Disease[J]. Curr Mol Med, 2010, 10(8): 744-55.
[7] Tong X, Zhao F, Mancuso A, et al. The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation[J]. Proc Natl Acad Sci U S A, 2009, 106(51): 21660-5. doi: 10.1073/pnas.0911316106
[8] Chevrollier A, Loiseau D, Gautier F, et al. ANT2 expression under hypoxic conditions produces opposite cell-cycle behavior in 143B and HepG2 cancer cells[J]. Mol Carcinog, 2004, 42(1): 1-8.
[9] Baur DM, Klotsche J, Hamnvik OP, et al. Type 2 diabetes mellitus and medications for type 2 diabetes mellitus are associated with risk for and mortality from cancer in a german primary care cohort[J]. Metabolism, 2011, 60(10): 1363-71. doi: 10.1016/j.metabol.2010.09.012
[10] Queiroz EA, Puukila S, Eichler R, et al. Metformin induces apoptosis and cell cycle arrest mediated by oxidative stress, AMPK and FOXO3a in MCF-7 breast cancer cells[J]. PLoS One, 2014, 9(5): e98207. doi: 10.1371/journal.pone.0098207
[11] Cai X, Hu X, Tan X, et al. Metformin Induced AMPK Activation, G0/G1 Phase Cell Cycle Arrest and the Inhibition of Growth of Esophageal Squamous Cell Carcinomas In Vitro and In Vivo[J]. PLoS One, 2015, 10(7): e0133349. doi: 10.1371/journal.pone.0133349
[12] Ben Sahra I, Regazzetti C, Robert G, et al. Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1[J]. Cancer Res, 2011, 71(13): 4366-72. doi: 10.1158/0008-5472.CAN-10-1769
[13] Hu JW, Sun P, Zhang DX, et al. Hexokinase 2 regulates G1/S checkpoint through CDK2 in cancer-associated fibroblasts[J]. Cell Signal, 2014, 26(10): 2210-6. doi: 10.1016/j.cellsig.2014.04.015
[14] Kaushik N, Lee SJ, Choi TG, et al. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells[J]. Sci Rep, 2015, 5: 8726. doi: 10.1038/srep08726
[15] Yang Yu, Morin PJ, Han WF, et al. Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c[J]. Exp Cell Res, 2003, 282(2): 132-7. doi: 10.1016/S0014-4827(02)00023-X
[16] Azoitei N, Becher A, Steinestel K, et al. PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation[J]. Mol Cancer, 2016, 15: 3.
[17] Song T, Gan W, Chen J, et al. Antibodies against Clonorchis sinensis LDH could cross-react with LDHB localizing on the plasma membrane of human hepatocarcinoma cell SMMC-7721 and induce apoptosis[J]. Parasitol Res, 2016, 115(4): 1595-603. doi: 10.1007/s00436-015-4895-z
[18] Zhuo B, Li Y, Li Z, et al. PI3K/Akt signaling mediated Hexokinase-2 expression inhibits cell apoptosis and promotes tumor growth in pediatric osteosarcoma[J]. Biochem Biophys Res Commun, 2015, 464(2): 401-6. doi: 10.1016/j.bbrc.2015.06.092
[19] Gopinath P, Singh RK, Iqbal MA, et al. Regulation of Pyruvate Kinase M Switch towards PKM1 by LKB1-AMPK Axis Tolerates Hypoglycemic Stress in Cancer Cells[J]. J Biol Chem, 2016, pii: jbc.M116.729079.[Epub ahead of print].
[20] Isakovic A, Harhaji L, Stevanovic D, et al. Dual antiglioma action of metformin: cell cycle arrest and mitochondria-dependent apoptosis[J]. Cell Mol Life Sci, 2007, 64(10): 1290-302. doi: 10.1007/s00018-007-7080-4
[21] Han G, Gong H, Wang Y, et al. AMPK/mTOR-mediated inhibition of survivin partly contributes to metformin-induced apoptosis in human gastric cancer cell[J]. Cancer Biol Ther, 2015, 16(1): 77-87. doi: 10.4161/15384047.2014.987021
[22] Fei X, Qi M, Wu B, et al. MicroRNA-195-5p suppresses glucose uptake and proliferation of human bladder cancer T24 cells by regulating GLUT3 expression[J]. FEBS Lett, 2012, 586(4): 392-7. doi: 10.1016/j.febslet.2012.01.006
[23] Sauer H, Engel S, Milosevic N, et al. Activation of AMP-kinase by AICAR induces apoptosis of DU-145 prostate cancer cells through generation of reactive oxygen species and activation of c-Jun N-terminal kinase[J]. Int J Oncol, 2012, 40(2): 501-8. https://www.researchgate.net/publication/51719378_Activation_of_AMP-kinase_by_AICAR_induces_apoptosis_of_DU-145_prostate_cancer_cells_through_generation_of_reactive_oxygen_species_and_activation_of_c-Jun_N-terminal_kinase
[24] Zhou Y, Lu N, Qiao C, et al. FV-429 Induces Apoptosis and Inhibits Glycolysis by Inhibiting Akt-Mediated Phosphorylation of Hexokinase Ⅱ in MDA-MB-231 Cells[J]. Mol Carcinog, 2016, 55(9): 1317-28. doi: 10.1002/mc.v55.9
[25] Lee YM, Lee G, Oh TI, et al. Inhibition of glutamine utilization sensitizes lung cancer cells to apigenin-induced apoptosis resulting from metabolic and oxidative stress[J]. Int J Oncol, 2016, 48(1): 399-408. https://www.researchgate.net/profile/Do_Wan_Shim/publication/283746819_Inhibition_of_glutamine_utilization_sensitizes_lung_cancer_cells_to_apigenin-induced_apoptosis_resulting_from_metabolic_and_oxidative_stress/links/564c294008aeab8ed5e7b015.pdf?origin=publication_detail
[26] Fang J, Bao YY, Zhou SH, et al. Apigenin inhibits the proliferation of adenoid cystic carcinoma via suppression of glucose transporter-1[J]. Mol Med Rep, 2015, 12(5): 6461-6. https://www.researchgate.net/publication/281261616_Apigenin_inhibits_the_proliferation_of_adenoid_cystic_carcinoma_via_suppression_of_glucose_transporter-1
[27] Duan L, Perez RE, Davaadelger B, et al. p53-regulated autophagy is controlled by glycolysis and determines cell fate[J]. Oncotarget, 2015, 6(27): 23135-56. doi: 10.18632/oncotarget
[28] Feng Y, Ke C, Tang Q, et al. Metformin promotes autophagy and apoptosis in esophageal squamous cell carcinoma by downregulating Stat3 signaling[J]. Cell Death Dis, 2014, 5: e1088. doi: 10.1038/cddis.2014.59
[29] Jagannathan S, Abdel-Malek MA, Malek E, et al. Pharmacologic screens reveal metformin that suppresses GRP78-dependent autophagy to enhance the anti-myeloma effect of bortezomib[J]. Leukemia, 2015, 29(11): 2184-91. doi: 10.1038/leu.2015.157
[30] Jiang X, Overholtzer M, Thompson CB. Autophagy in cellular metabolism and cancer[J]. J Clin Invest, 2015, 125(1): 47-54. doi: 10.1172/JCI73942
[31] Kim DE, Kim Y, Cho DH, et al. Raloxifene Induces Autophagy-Dependent Cell Death in Breast Cancer Cells via the Activation of AMP-Activated Protein Kinase[J]. Mol Cells, 2015, 38(2): 138-44. doi: 10.14348/molcells.2015.2193
[32] Lu J, Tan M, Cai Q. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism[J]. Cancer Lett, 2015, 356(2 Pt A): 156-64. http://www.pubfacts.com/detail/24732809/The-Warburg-effect-in-tumor-progression-mitochondrial-oxidative-metabolism-as-an-anti-metastasis-mec
[33] Kondaveeti Y, Guttilla Reed IK, White BA. Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines[J]. Cancer Lett, 2015, 364(1): 44-58. doi: 10.1016/j.canlet.2015.04.025
[34] Fu QF, Liu Y, Fan Y, et al. Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway[J]. J Hematol Oncol, 2015, 8: 22. doi: 10.1186/s13045-015-0117-5
[35] Cufí S, Vazquez-Martin A, Oliveras-Ferraros C, et al. Metformin against TGFβ-induced epithelial-to-mesenchymal transition (EMT): from cancer stem cells to aging-associated fibrosis[J]. Cell Cycle, 2010, 9(22): 4461-8. doi: 10.4161/cc.9.22.14048
[36] Vazquez-Martin A, Oliveras-Ferraros C, Cufí S, et al. Metformin regulates breast cancer stem cell ontogeny by transcriptional regulation of the epithelial-mesenchymal transition (EMT) status[J]. Cell Cycle, 2010, 9(18): 3807-14. https://www.researchgate.net/publication/47300647_Metformin_regulates_breast_cancer_stem_cello_ntogeny_by_transcriptional_regulation_of_the_epithelial-mesenchymal_transition_EMT_status
[37] Gao JL, Chen YG. Natural compounds regulate glycolysis in hypoxic tumor microenvironment[J]. Biomed Res Int, 2015, 2015: 354143.
[38] Hattori H, Okuda K, Murase T, et al. Isolation, identification, and biological evaluation of HIF-1-modulating compounds from Brazilian green propolis[J]. Bioorg Med Chem, 2011, 19(18): 5392-401. doi: 10.1016/j.bmc.2011.07.060
[39] Zhang W, Tong D, Liu F, et al. RPS7 inhibits colorectal cancer growth via decreasing HIF-1α-mediated glycolysis[J]. Oncotarget, 2016, 7(5): 5800-14.
[40] Zhang D, Wang Y, Shi Z, et al. Metabolic Reprogramming of Cancer-Associated Fibroblasts by IDH3a Downregulation[J]. Cell Rep, 2015, 10(8): 1335-48. doi: 10.1016/j.celrep.2015.02.006
[41] Chaudhri VK, Salzler GG, Dick SA, et al. Metabolic alterations in lung cancer-associated fibroblasts correlated with increased glycolytic metabolism of the tumor[J]. Mol Cancer Res, 2013, 11(6): 579-92. doi: 10.1158/1541-7786.MCR-12-0437-T
[42] Pavlides S, Vera I, Gandara R, et al. Warburg Meets Autophagy: Cancer-Associated Fibroblasts Accelerate Tumor Growth and Metastasis via Oxidative Stress, Mitophagy, and Aerobic Glycolysis[J]. Antioxid Redox Signal, 2012, 16(11): 1264-84. doi: 10.1089/ars.2011.4243
[43] Markowitz GJ, Yang P, Fu J, et al. Inflammation-Dependent IL18 Signaling Restricts Hepatocellular Carcinoma Growth by Enhancing the Accumulation and Activity of Tumor-Infiltrating Lymphocytes[J]. Cancer Res, 2016, 76(8): 2394-405. doi: 10.1158/0008-5472.CAN-15-1548
[44] Yang L, Xie M, Yang M, et al. PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis[J]. Nat Commun, 2014, 5: 4436. http://www.sigmaaldrich.com/catalog/papers/25019241
[45] Gottfried E, Lang SA, Renner K, et al. New Aspects of an Old Drug-Diclofenac Targets MYC and Glucose Metabolism in Tumor Cells[J]. PLoS One, 2013, 8(7): e66987 doi: 10.1371/journal.pone.0066987
[46] Nieman KM, Romero IL, Van Houten BL, et al. Adipose tissue and adipocytes support tumorigenesis and metastasis[J]. Biochim Biophys Acta, 2013, 1831(10): 1533-41. doi: 10.1016/j.bbalip.2013.02.010
[47] Pierre K, Parent A, Jayet PY, et al. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice[J]. J Physiol, 2007, 583(Pt 2): 469-86. https://www.researchgate.net/publication/6237567_Enhanced_expression_of_three_monocarboxylate_transporter_isoforms_in_the_brain_of_obese_mice
[48] Dhup S, Dadhich RK, Porporato PE, et al. Multiple biological activities of lactic acid in cancer: influences on tumor growth, angiogenesis and metastasis[J]. Curr Pharm Des, 2012, 18(10): 1319-30. doi: 10.2174/138161212799504902
[49] Husain Z, Huang Y, Seth P, et al. Tumor-derived lactate modifies antitumor immune response: effect on myeloid-derived suppressor cells and NK cells[J]. J Immunol, 2013, 191(3): 1486-95. doi: 10.4049/jimmunol.1202702
[50] Gupta P, Singh A, Gowda P, et al. Lactate induced HIF-1α-PRMT1 cross talk affects MHC Ⅰ expression in monocytes[J]. Exp Cell Res, 2016, 347(2): 293-300. doi: 10.1016/j.yexcr.2016.08.008
[51] Martin M. Can Game Theory Explain Invasive Tumor Metabolism?[J]. J Natl Cancer Inst, 2009, 101(4): 220-2. doi: 10.1093/jnci/djp013
[52] Kareva I. Prisoner's dilemma in cancer metabolism[J]. PLoS One, 2011, 6(12): e28576. doi: 10.1371/journal.pone.0028576
[53] Pedersen L, Christensen JF, Hojman P, et al. Effects of exercise on tumor physiology and metabolism[J]. Cancer J, 2015, 21(2): 111-6. doi: 10.1097/PPO.0000000000000096
-
期刊类型引用(4)
1. 刘川,马玮,王志海,李彦仕,潘敏,曾泉,胡国华. pT3N0期喉鳞癌的临床治疗策略. 临床耳鼻咽喉头颈外科杂志. 2025(01): 61-65 . 百度学术
2. 彭丽娜,武川军,要兆旭,赵倩,韩海平. 沉默miR-373对喉癌细胞增殖、凋亡能力的影响及作用机制研究. 中国耳鼻咽喉头颈外科. 2024(06): 346-350 . 百度学术
3. 张寒,张胜利,祖媛媛. 声门上型喉癌手术患者预后的预测模型构建. 国际医药卫生导报. 2024(11): 1796-1801 . 百度学术
4. 郭珊珊,杨文婧,许丽萍,陶倩,王欢,王书谦. 喉癌治疗后复发的影响因素分析及预测模型构建. 山东医药. 2023(33): 27-31 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 2603
- HTML全文浏览量: 464
- PDF下载量: 1853
- 被引次数: 4