Prediction of Disease Specific Survival Rates by Genes Associated with Relapse of Breast Cancer
-
摘要:目的
复发是导致乳腺癌患者死亡的主要原因,通过研究与乳腺癌复发相关的分子标记有助于预测乳腺癌的预后。
方法本研究采用BRB-ArrayTools分析了两组乳腺癌基因芯片(GSE1456和GSE2034),筛选与复发相关的差异基因,并用Cox比例风险模型进行基因表达的单因素分析得到与生存显著相关的基因,用于GSE1456中肿瘤特异生存率的预测,通过留一法交叉验证计算错误分类率,用受试者工作特征(ROC)曲线评估预测结果。
结果用于预测的29个基因中,交叉验证准确率均超过96%,ROC曲线下面积为0.803,分类预测结果良好。通过基因功能注释,发现这些基因与细胞周期、细胞增殖、细胞运动与黏着及DNA修复等生物学功能相关,具有较强的肿瘤细胞特征。
结论基因表达谱分析为研究乳腺癌的发病机制提供了新思路, 也为转移性乳腺癌的分子诊断和个体化治疗奠定基础。
Abstract:ObjectiveRelapse is responsible for the majority of deaths in breast cancer. Molecular marker related to relapse is helpful for the diagnosis and treatment of breast cancer.
MethodsTwo microarray datasets of breast cancer, GSE1456 and GSE2034, from GEO database were analyzed by software BRB-ArrayTools. Genes significantly associated with survival were obtained by univariate analysis and Cox proportional hazards model from differential genes related to relapse. These genes were used as candidate genes to predict specific survival rates in GSE1456. Leave-one-out cross-validation method was used to compute mis-classification rate. The result of prediction was assessed with receiver operating characteristic (ROC) curve.
ResultsTwenty-nine genes were used as the signature to predict the disease specific survival of breast cancer. Area under ROC curve was 0.803. Cross validation of 29 genes were all higher than 96%. The methods showed satisfactory classification result. Gene annotation analysis showed that these genes were associated with cell cycle, cell proliferation, DNA repair, cell motility and adhesion.
ConclusionThe analysis of gene expression profiles may provide a new thought for understanding the pathogenesis of breast cancer, and is helpful for molecular diagnosis and individualized therapy.
-
Key words:
- Breast cancer /
- Relapse /
- Molecular marker /
- Disease specific survival
-
-
表 1 复发相关基因的预测分类器
Table 1 Classifier of differential genes related to relapse
表 2 分类器基因的GATHER分析
Table 2 Pathway analysis of genes in classifier by GATHER
-
[1] Jatoi I, Tsimehon A, Weiss H, et al. Hazard rates of recurrence flowing diagnosis of primary breast cancer[J]. Breast Cancer Res Treat, 2005, 89(2): 173-8. doi: 10.1007/s10549-004-1722-0
[1] Jatoi I, Tsimehon A, Weiss H, et al. Hazard rates of recurrence flowing diagnosis of primary breast cancer[J]. Breast Cancer Res Treat, 2005, 89(2): 173-8. [2] 孙圣荣. 乳腺癌早期诊断进展[J]. 临床外科杂志, 2013, 21(7): 500-2. Sun SR. Advances in early diagnosis of breast cancer[J]. Lin Chuang Wai Ke Za Zhi, 2013, 21(7): 500-2.
[2] 孙圣荣. 乳腺癌早期诊断进展[J]. 临床外科杂志, 2013, 21(7): 50 0-2. [Sun SR. Advances in early diagnosis of breast cancer[J]. Lin Chuang Wai Ke Za Zhi, 2013, 21(7): 500-2.] [3] 黄绪群, 曾辉. 食管腺癌与Barrett’s食管基因表达谱的研 究[J] 肿瘤防治研究, 2009, 36(8): 639-42. [Huang XQ, Zeng H. Correlation between the gene expression profiles of adenocarcinoma of esophagus and Barrett’s esophagus[J]. Zhong Liu Fang Zhi Yan Jiu, 2009, 36(8): 639-42.] [3] 黄绪群, 曾辉. 食管腺癌与Barrett’s食管基因表达谱的研究[J]. 肿瘤防治研究, 2009, 36(8): 639-42. http://www.zlfzyj.com/CN/abstract/abstract1455.shtml Huang XQ, Zeng H. Correlation between the gene expression profiles of adenocarcinoma of esophagus and Barrett’s esophagus[J]. Zhong Liu Fang Zhi Yan Jiu, 2009, 36(8): 639-42. http://www.zlfzyj.com/CN/abstract/abstract1455.shtml
[4] 韩小宏, 毛巧霞, 李晓春, 等. 基于生物信息学方法的血清 标记物模型在胃癌诊断中的应用[J]. 中国癌症杂志, 2010, 20 (5): 364-8. [Han XH, Mao QX, Li XC, et al. Application of bioinformatics combining serum tumor markers in gastric carcinoma diagnosis[J]. Zhongguo Ai Zheng Za Zhi, 2010, 20(5): 36 4-8.] [4] 韩小宏, 毛巧霞, 李晓春, 等. 基于生物信息学方法的血清标记物模型在胃癌诊断中的应用[J]. 中国癌症杂志, 2010, 20(5): 364-8. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGAZ201005012.htm Han XH, Mao QX, Li XC, et al. Application of bioinformatics combining serum tumor markers in gastric carcinoma diagnosis[J]. Zhongguo Ai Zheng Za Zhi, 2010, 20(5): 364-8. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGAZ201005012.htm
[5] Karn T, Metzler D, Ruckhäberle E, et al. Data-driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer[J]. Breast Cancer Res Treat, 2010, 12 0(3): 567-79. [5] Karn T, Metzler D, Ruckh?berle E, et al. Data-driven derivation of cutoffs from a pool of 3,030 Affymetrix arrays to stratify distinct clinical types of breast cancer[J]. Breast Cancer Res Treat, 2010, 120(3): 567-79. doi: 10.1007/s10549-009-0416-z
[6] Rody A, Karn T, Ruckhäberle E, et al. Gene expression of topoisomerase Ⅱ alpha (TOP2A) by microarray analysis is highly prognostic in estrogen receptor (ER) positive breast cancer[J]. Breast Cancer Res Treat, 2009, 113(3): 457-66. [6] Rody A, Karn T, Ruckh?berle E, et al. Gene expression of topoisomerase Ⅱ alpha (TOP2A) by microarray analysis is highly prognostic in estrogen receptor (ER) positive breast cancer[J]. Breast Cancer Res Treat, 2009, 113(3): 457-66. doi: 10.1007/s10549-008-9964-x
[7] 沈嫱, 宋光辉, 张建兴, 等. Logistic回归及ROC曲线综合评价超声造影对乳腺癌的诊断[J]. 实用医学杂志, 2009, 25(7): 1058-60. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYZ200907026.htm Shen Q, Song GH, Zhang JX, et al. Comprehensive evaluation of the diagnostic value of contrast-enhanced sonography for breast cancer by ROC curve and logistic regression[J]. Shi Yong Yi Xue Za Zhi, 2009, 25(7): 1058-60. http://www.cnki.com.cn/Article/CJFDTOTAL-SYYZ200907026.htm
[7] 沈嫱, 宋光辉, 张建兴, 等. Logistic回归及ROC曲线综合评价 超声造影对乳腺癌的诊断[J]. 实用医学杂志, 2009, 25(7): 10 58-60. [Shen Q, Song GH, Zhang JX, et al. Comprehensive evaluation of the diagnostic value of contrast-enhanced sonography for breast cancer by ROC curve and logistic regression[J]. Shi Yong Yi Xue Za Zhi, 2009, 25(7): 1058-60.] [8] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. cell, 2011, 144(5): 646-74. [8] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. cell, 2011, 144(5): 646-74. doi: 10.1016/j.cell.2011.02.013
[9] Malaney S, Daly RJ. The ras signaling pathway in mammary tumorigenesis and metastasis[J]. J Mammary Gland Biol Neoplasia, 2001, 6(1): 101-13. [9] Malaney S, Daly RJ. The ras signaling pathway in mammary tumorigenesis and metastasis[J]. J Mammary Gland Biol Neoplasia, 2001, 6(1): 101-13. doi: 10.1023/A:1009572700317
[10] Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation[J]. Nature, 2001, 411 (6841): 1017-21. doi: 10.1038/35082500
[10] Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation[J]. Nature, 2001, 411 (6841): 1017-21. [11] Campone M, Campion L, Roché H, et al. Prediction of metastatic relapse in node-positive breast cancer: establishment of a clinicogenomic model after FEC100 adjuvant regimen[J]. Breast Cancer Res Treat, 2008, 109(3): 491-501. doi: 10.1007/s10549-007-9673-x
[11] Campone M, Campion L, Roché H, et al. Prediction of metastatic relapse in node-positive breast cancer: establishment of a clinicogenomic model after FEC100 adjuvant regimen[J]. Breast Cancer Res Treat, 2008, 109(3): 491-501. [12] Loh SF, Cooper C, Selinger CI, et al. Cell cycle marker expression in benign and malignant intraductal papillary lesions of the breast[J]. J Clin Pathol, 2015, 68(3): 187-91. doi: 10.1136/jclinpath-2014-202331
[12] Loh SF, Cooper C, Selinger CI, et al. Cell cycle marker expression in benign and malignant intraductal papillary lesions of the breast[J]. J Clin Pathol, 2015, 68(3): 187-91. [13] Ding K, Li W, Zou Z, et al. CCNB1 is a prognostic biomarker for ER+ breast cancer[J]. Med Hypotheses, 2014, 83(3): 359-64. doi: 10.1016/j.mehy.2014.06.013
[13] Ding K, Li W, Zou Z, et al. CCNB1 is a prognostic biomarker for ER+ breast cancer[J]. Med Hypotheses, 2014, 83(3): 359-64. [14] Shubbar E, Kovács A, Hajizadeh S, et al. Elevated cyclin B2 expression in invasive breast carcinoma is associated with unfavorable clinical outcome[J]. BMC Cancer, 2013, 13: 1. [14] Shubbar E, Kovács A, Hajizadeh S, et al. Elevated cyclin B2 expression in invasive breast carcinoma is associated with unfavorable clinical outcome[J]. BMC Cancer, 2013, 13: 1. doi: 10.1186/1471-2407-13-1
[15] Wang HC, Chiu CF, Tsai RY, et al. Association of genetic polymorphisms of EXO1 gene with risk of breast cancer in Taiwan[J]. Anticancer Res, 2009, 29(10): 3897-901. [15] Wang HC, Chiu CF, Tsai RY, et al. Association of genetic polymorphisms of EXO1 gene with risk of breast cancer in Taiwan[J]. Anticancer Res, 2009, 29(10): 3897-901. http://cn.bing.com/academic/profile?id=1483530655&encoded=0&v=paper_preview&mkt=zh-cn
[16] Muthuswami M, Ramesh V, Banerjee S, et al. Breast tumors with elevated expression of 1q candidate genes confer poor clinical outcome and sensitivity to Ras/PI3K inhibition[J]. PLoS One, 2013, 8(10): e77553. doi: 10.1371/journal.pone.0077553
[16] Muthuswami M, Ramesh V, Banerjee S, et al. Breast tumors with elevated expression of 1q candidate genes confer poor clinical outcome and sensitivity to Ras/PI3K inhibition[J]. PLoS One, 20 13, 8(10): e77553.