Research Progress of circRNAs in Cancer
-
摘要:
环状RNA(circular RNA, circRNA)是一种共价闭合的单股环状分子,属于非编码RNA家族成员。circRNA以保守、稳定、特异、高含量为特点,可作为microRNA海绵调控靶miRNA的活性,并参与基因转录和蛋白生成的调控,逐渐成为非编码RNA调控网络的新星。circRNA在多种疾病的发生发展中发挥重要作用,并且在肿瘤诊断、治疗和预后等方面具有巨大的潜能,有望成为新的肿瘤生物标志物或分子靶向治疗靶点。
Abstract:Circular RNAs(circRNAs) are a large class of RNAs that form covalently closed continuous loops. They are the members of the non-coding RNAs. circRNAs are characterized by evolutionally conserved, relatively stable, highly specific and enormously abundant. They can regulate miRNA activity as “miRNA sponges” and have an effect on gene transcription and the generation of proteins. circRNAs are gradually becoming a new star of the ncRNA regulatory network. They are involved in the development of numerous diseases and have great potential in the diagnosis, treatment and prognosis of tumors. circRNAs are expected to become new tumor biomarkers or molecular therapeutic targets.
-
Key words:
- circRNA /
- Gene expression regulation /
- Tumor markers /
- Therapeutic targets
-
0 引言
环状RNA(circular RNA,circRNA)不同于典型的线性RNA分子,没有5’,3’末端和多聚腺苷酸尾结构,而是形成共价闭合的连续环[1]。研究表明circRNA在基因表达调控中发挥microRNA海绵、结合RNA相关蛋白、调控剪接和转录、修饰亲本基因的表达等重要功能[2]。circRNA可通过调控Wnt信号通路、上皮-间质转化(epithelial-mesenchymal transition,EMT)等影响肿瘤的发生发展、侵袭转移及耐药性等。circRNA已成为RNA研究领域的新热点,其在肿瘤诊断、治疗及预后中的潜在临床价值已受到密切关注。
1 circRNA概述
circRNA主要来源于蛋白编码基因的外显子,也可由内含子、基因间区、UTR区、非编码RNA位点和已知转录物的反义位点产生[3]。目前的研究表明,circRNA可以作为miRNA海绵或竞争性内源RNA(competing endogenous RNA,ceRNA)参与多种疾病(如动脉粥样硬化疾病、朊病毒疾病、肌强直性营养不良等)的发生发展,并且与神经系统疾病(如帕金森病、阿尔兹海默症等)密切相关[4]。此外,circRNA在肿瘤的发生发展、侵袭转移及耐药等方面具有重要的作用,并有望成为肿瘤诊断的新型分子标志物和治疗靶点。
2 circRNA与肿瘤
2.1 circRNA与肿瘤相关miRNA
2011年,Hansen等[5]在人类和小鼠的大脑组织中发现了一种编码于人类CDR1基因位点反向基因组的天然环状转录物CDR1as,可作为miR-7海绵即ciRS-7。作为一种ceRNA,ciRS-7可抑制miR-7活性并与miR-7竞争结合其他RNA(如mRNA和long non-coding RNA),从而调控靶基因的表达[3, 6]。比如,HeLa细胞中ciRS-7的稳定表达会导致SNCA、EGFR和IRS2的mRNA水平明显下调,提示其可能与宫颈癌的发生发展密切相关[6]。另有报道,ciRS-7可作为“mRNA圈套”,通过封闭翻译起始位点减少蛋白质的表达水平[7]。此外,ciRS-7还可以作为RNA结合蛋白(RNA binding protein,RBP)结合多种蛋白质亚基的“支架”,增强circRNA转录物的稳定性[8]。已有研究表明,ciRS-7在成神经细胞瘤中广泛表达,在星形细胞瘤、肾细胞癌和肺癌中频繁表达[9]。通过RNA荧光原位杂交和免疫荧光杂交发现,HeLa细胞中ciRS-7和miR-7间存在很大程度上的亚细胞共定位[6]。并且,ciRS-7对miR-671敏感,miR-671可以诱导ciRS-7的降解和核酸内切分裂。因此可推测,ciRS-7结合miR-7并转移到特定的亚细胞定位点,随后miR-671通过降解ciRS-7促进miR-7的释放[3, 10],miR-7/miR-671/ciRS-7轴可能在肿瘤的发生发展、侵袭转移等过程中发挥重要作用。
此外,Li等[11]通过生物信息学分析发现了一种含有E3泛素蛋白连接酶(ITCH)外显子的circRNA—cir-ITCH。作为Wnt/β-catenin通路中的重要分子,ITCH可调节蛋白质稳定、免疫应答及肿瘤进展[12],其激活可在多种肿瘤(如肝细胞癌[13]、前列腺癌[14]、卵巢癌[15]等)中产生致癌作用,并且其靶标(包括p63、p73、Dvl2及Notch1等)与肿瘤耐药性密切相关[16]。研究者们运用TaqMan rt-PCR对684例食管鳞状细胞癌和癌旁组织检测发现,相比于癌旁组织,cir-ITCH在癌组织中的表达明显下调。cir-ITCH可作为肿瘤相关miRNA(miR-7、miR-17、miR-214、miR-128以及miR-216b[6])海绵,从而上调ITCH水平,促进磷酸化Dvl2的泛素化和降解,抑制Wnt/β-catenin通路。随后,Huang等[17]在结直肠癌中验证了cir-ITCH的海绵作用,并发现cir-ITCH可抑制c-myc和cyclinD1的表达。c-myc和cyclinD1可触发和调控细胞增殖相关基因的转录,其在包括结直肠癌在内的多种肿瘤中过表达[18]。cir-ITCH对其的抑制作用可导致细胞周期停滞并抑制恶性肿瘤细胞的生长。这些结果均表明,cir-ITCH可通过调节miRNA活性、上调ITCH水平、抑制Wnt通路和调控细胞增殖,从而发挥抑癌作用[11]。
最近,Caiment等[19]首次提出了circRNA在异生物质暴露下的表达模式。他们通过高通量测序(HTS)检测HepG2细胞暴露于苯并芘(BaP)后的完整基因转录组。在6个时间点中只有一种miRNA是持续过表达的,即miR-181a-1_3p。他们提出假说:首先,BaP暴露诱导的miR-181a-1_3p过表达抑制了MGMT(一种DNA损伤修复酶)翻译并显著降低其mRNA水平。24 h后miR-181a-1_3p表达下调,而捕获这一miRNA的circRNA表达上调,从而上调MGMT水平,这一机制可能增加DNA的突变率并最终导致肝癌。
2.2 circRNA与肿瘤相关途径
尽管circRNA可通过与miRNA相互作用间接地参与肿瘤的多种生物学进程,但这一“海绵”作用可能只是circRNA功能的一部分。Conn等[20]在EMT中发现,上百种circRNA的表达受TGF-β的影响,而与其同源的mRNA转录物无关。他们用circScreen同时定量线性RNA和circRNA,发现RNA结合蛋白Quaking(QKI)是EMT中circRNA生成的主要调节因子。EMT中大多数circRNA水平是上调的,表明某些circRNA具有间质表型相关功能,并因此影响间质细胞性能(比如迁移、侵袭以及肿瘤转移倾向)。小部分circRNA则相反,这与它们具有上皮特异性功能一致。比如,DOCK1是一种鸟苷酸交换因子(GEF),可激活Rac以提高细胞活性[21]。使用TGF-β诱导EMT过程后,上皮细胞中含量最为丰富的DOCK1 circRNA水平下降了30倍,而DOCK1 mRNA水平则上升了2倍,提示这一circRNA的功能之一可能是引起上皮细胞中mRNA的下调,从而保持细胞的稳定性。然而,鉴于上皮细胞中含有大量的DOCK1 circRNA,其很可能还有其他方面的功能。总而言之,EMT过程中circRNA的生成受QKI的调节,并且某些circRNA可能在EMT中具有重要作用,从而调控肿瘤细胞的侵袭性和转移能力[20]。然而,circRNA在EMT中的确切作用及相关机制仍有待进一步明确。
2.3 circRNA与肿瘤的诊断与治疗
最近,Li等[22]在胃癌组织中的研究发现,Hsa_circ_002059的表达显著下调,且其血浆水平在胃癌术前和术后患者中有明显差异,其低水平表达与远处转移、TNM分期、性别和年龄明显相关,提示Hsa_circ_002059可能成为胃癌诊断的一种新型分子标志,并且circRNA的血浆水平检测使得其应用于临床成为可能。另有研究表明,外泌体中含有大量的circRNA。RNA序列分析显示,circRNA在外泌体中的含量明显高于分泌细胞,且这一分泌可被miRNA调控。人类血清外泌体中检测出超过1000种circRNA,并且血清外泌体circRNA在结肠癌中具有特异性,提示circRNA可作为外泌体中的肿瘤标志物,并且外泌体circRNA可能具有潜在的生物学功能[23]。
相比于典型的线性RNA海绵,环状RNA海绵可能对miRNA的致癌活性具有更强的抑制作用,并因此产生更强的抗肿瘤效应。Tay等[24]探讨了恶性黑色素瘤细胞系中不同mRNA海绵表达载体的设计及其效果,他们发现相比于线性载体,环状载体能使mRNA海绵具有更加持久而稳定的作用。环状RNA海绵可以添加更多的特异性miRNA结合位点,从而无限地增强其抗miRNA能力[25],并且特定的circRNA含有许多特定的miRNA结合位点,其具有比典型的miRNA抑制剂更有效和更特异的抑制功能。相信在不久的将来,miRNA环化海绵有望成为一种基于RNA的肿瘤基因治疗新策略。
3 结语
circRNA是丰富、稳定、保守、特异的一类RNA分子,反义互补序列和RBP可在circRNA的生物合成中产生重要的作用[26],但大多数circRNA的降解和定位仍需深入研究,circRNA在肿瘤发生发展中的作用及分子机制有待进一步阐明。虽然circRNA具有高度的特异性、保守性和稳定性,但目前检测和定性circRNA的方法仍有局限性,不同的生物信息学方法或测序数据造成circRNA的识别出现偏倚,circRNA的全长序列检测技术也有待进一步发展。研究表明,circRNA在肿瘤组织中、血浆及唾液中的表达具有特异性[23, 27],提示circRNA在疾病诊断和治疗中具有很好的临床应用价值,并有望成为肿瘤早期诊断、预后判断的分子标志物及肿瘤治疗靶点。
-
[1] Chen LL, Yang L. Regulation of circRNA biogenesis[J]. RNA Biol, 20 15, 12(4): 381-8. [1] Chen LL, Yang L. Regulation of circRNA biogenesis[J]. RNA Biol, 2015, 12(4): 381-8. doi: 10.1080/15476286.2015.1020271
[2] Li J, Yang J, Zhou P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015, 5(2): 472-80. [2] Li J, Yang J, Zhou P, et al. Circular RNAs in cancer: novel insights into origins, properties, functions and implications[J]. Am J Cancer Res, 2015, 5(2): 472-80. http://cn.bing.com/academic/profile?id=2276711938&encoded=0&v=paper_preview&mkt=zh-cn
[3] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 49 5(7441): 333-8. [3] Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441): 333-8. doi: 10.1038/nature11928
[4] Qu S, Yang X, Li X, et al. Circular RNA: A new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-8. doi: 10.1016/j.canlet.2015.06.003
[4] Qu S, Yang X, Li X, et al. Circular RNA: A new star of noncoding RNAs[J]. Cancer Lett, 2015, 365(2): 141-8. [5] Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J]. EMBO J, 2011, 30(21): 4414-22. doi: 10.1038/emboj.2011.359
[5] Hansen TB, Wiklund ED, Bramsen JB, et al. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA[J]. EMBO J, 2011, 30(21): 4414-22. [6] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 49 5(7441): 384-8. [6] Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges[J]. Nature, 2013, 495(7441): 384-8. doi: 10.1038/nature11993
[7] Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5): 453-61. [7] Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5): 453-61. doi: 10.1038/nbt.2890
[8] Ledford H. Circular RNAs throw genetics for a loop[J]. Nature, 20 13, 494(7438): 415. [8] Ledford H. Circular RNAs throw genetics for a loop[J]. Nature, 2013, 494(7438): 415. http://cn.bing.com/academic/profile?id=2013937380&encoded=0&v=paper_preview&mkt=zh-cn
[9] Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer[J]. Cancer Res, 2013, 73(18): 5609-12. [9] Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer[J]. Cancer Res, 2013, 73(18): 5609-12. doi: 10.1158/0008-5472.CAN-13-1568
[10] Kosik KS. Molecular biology: Circles reshape the RNA world[J]. Nature, 2013, 495(7441): 322-4.
[10] Kosik KS. Molecular biology: Circles reshape the RNA world[J]. Nature, 2013, 495(7441): 322-4. [11] Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway[J]. Oncotarget, 2015, 6(8): 6001-13. [11] Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/beta-catenin pathway[J]. Oncotarget, 2015, 6(8): 6001-13. doi: 10.18632/oncotarget
[12] Rossi M, Inoue S, Walewska R, et al. Caspase cleavage of Itch in chronic lymphocytic leukemia cells[J]. Biochem Biophys Res Commun, 2009, 379(3): 659-64. doi: 10.1016/j.bbrc.2008.11.154
[12] Rossi M, Inoue S, Walewska R, et al. Caspase cleavage of Itch in chronic lymphocytic leukemia cells[J]. Biochem Biophys Res Commun, 2009, 379(3): 659-64. [13] Lin L, Yao Z, Bhuvaneshwar K, et al. Transcriptional regulation of STAT3 by SPTBN1 and SMAD3 in HCC through cAMP-response element-binding proteins ATF3 and CREB2[J]. Carcinogenesis, 20 14, 35(11): 2393-403. [13] Lin L, Yao Z, Bhuvaneshwar K, et al. Transcriptional regulation of STAT3 by SPTBN1 and SMAD3 in HCC through cAMP-response element-binding proteins ATF3 and CREB2[J]. Carcinogenesis, 2014, 35(11): 2393-403. doi: 10.1093/carcin/bgu163
[14] Xu W, Wang Z, Zhang W, et al. Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/beta-catenin signaling pathway[J]. Cancer Lett, 2015, 356(2 Pt B): 613-27.
[14] Xu W, Wang Z, Zhang W, et al. Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/beta-catenin signaling pathway[J]. Cancer Lett, 2015, 356(2 Pt B): 613-27. [15] Boyer A, Goff AK, Boerboom D. WNT signaling in ovarian follicle biology and tumorigenesis[J]. Trends Endocrinol Metab, 20 10, 21(1): 25-32. [15] Boyer A, Goff AK, Boerboom D. WNT signaling in ovarian follicle biology and tumorigenesis[J]. Trends Endocrinol Metab, 2010, 21(1): 25-32. doi: 10.1016/j.tem.2009.08.005
[16] Melino G, Gallagher E, Aqeilan RI, et al. Itch: a HECT-type E3 ligase regulating immunity, skin and cancer[J]. Cell Death Differ, 2008, 15(7): 1103-12. doi: 10.1038/cdd.2008.60
[16] Melino G, Gallagher E, Aqeilan RI, et al. Itch: a HECT-type E3 ligase regulating immunity, skin and cancer[J]. Cell Death Differ, 20 08, 15(7): 1103-12. [17] Huang G, Zhu H, Shi Y, et al. cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway[J]. PLoS One, 2015, 10(6): e0131225. doi: 10.1371/journal.pone.0131225
[17] Huang G, Zhu H, Shi Y, et al. cir-ITCH plays an inhibitory role in colorectal cancer by regulating the Wnt/beta-catenin pathway[J]. PLoS One, 2015, 10(6): e0131225. [18] He YJ, Liu BH, Xiang DB, et al. Inhibitory effect of caffeic acid phenethyl ester on the growth of SW480 colorectal tumor cells involves beta-catenin associated signaling pathway down-regulation[J]. World J Gastroenterol, 2006, 12(31): 4981-5. doi: 10.3748/wjg.v12.i31.4981
[18] He YJ, Liu BH, Xiang DB, et al. Inhibitory effect of caffeic acid phenethyl ester on the growth of SW480 colorectal tumor cells involves beta-catenin associated signaling pathway downregulation[ J] World J Gastroenterol, 2006, 12(31): 4981-5. [19] Caiment F, Gaj S, ClaessenS, et al. High-throughput data integration of RNA-miRNA-circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity[J]. Nucleic Acids Res, 20 15, 43(5): 2525-34. [19] Caiment F, Gaj S, ClaessenS, et al. High-throughput data integration of RNA-miRNA-circRNA reveals novel insights into mechanisms of benzo[a]pyrene-induced carcinogenicity[J]. Nucleic Acids Res, 2015, 43(5): 2525-34. doi: 10.1093/nar/gkv115
[20] Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 11 25-34. [20] Conn SJ, Pillman KA, Toubia J, et al. The RNA binding protein quaking regulates formation of circRNAs[J]. Cell, 2015, 160(6): 1125-34. doi: 10.1016/j.cell.2015.02.014
[21] Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease[J]. Eur J Cell Biol, 2014, 93(10-12): 46 6-77. [21] Gadea G, Blangy A. Dock-family exchange factors in cell migration and disease[J]. Eur J Cell Biol, 2014, 93(10-12): 466-77. doi: 10.1016/j.ejcb.2014.06.003
[22] Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 20 15, 444: 132-6. [22] Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer[J]. Clin Chim Acta, 2015, 444: 132-6. doi: 10.1016/j.cca.2015.02.018
[23] Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8): 981-4. doi: 10.1038/cr.2015.82
[23] Li Y, Zheng Q, Bao C, et al. Circular RNA is enriched and stable in exosomes: a promising biomarker for cancer diagnosis[J]. Cell Res, 2015, 25(8): 981-4. [24] Tay FC, Lim JK, Zhu H, et al. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells[J]. Adv Drug Deliv Rev, 2015, 81: 117-27. [24] Tay FC, Lim JK, Zhu H, et al. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells[J]. Adv Drug Deliv Rev, 2015, 81: 117-27. doi: 10.1016/j.addr.2014.05.010
[25] Bak RO, Hollensen AK, Mikkelsen JG. Managing microRNAs with vector-encoded decoy-type inhibitors[J]. Mol Ther, 2013, 21(8): 1478-85. doi: 10.1038/mt.2013.113
[25] Bak RO, Hollensen AK, Mikkelsen JG. Managing microRNAs with vector-encoded decoy-type inhibitors[J]. Mol Ther, 2013, 21 (8): 1478-85. [26] Zhang XO, Wang HB, Zhang Y, et al. Complementary sequence-mediated exon circularization[J]. Cell, 2014, 159(1): 134-47. doi: 10.1016/j.cell.2014.09.001
[26] Zhang XO, Wang HB, Zhang Y, et al. Complementary sequencemediated exon circularization[J]. Cell, 2014, 159(1): 134-47. [27] Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwiinteracting RNA, and circular RNA in human saliva[J]. Clin Chem, 2015, 61(1): 221-30. [27] Bahn JH, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J]. Clin Chem, 2015, 61(1): 221-30. doi: 10.1373/clinchem.2014.230433
计量
- 文章访问数: 1769
- HTML全文浏览量: 501
- PDF下载量: 1911