高级搜索

失巢凋亡相关LncRNAs在肺腺癌中的预后价值及免疫浸润分析

李欣, 贺娟, 金山, 王若澜, 罗奇彪, 夏伟

李欣, 贺娟, 金山, 王若澜, 罗奇彪, 夏伟. 失巢凋亡相关LncRNAs在肺腺癌中的预后价值及免疫浸润分析[J]. 肿瘤防治研究, 2024, 51(1): 34-42. DOI: 10.3971/j.issn.1000-8578.2024.23.0677
引用本文: 李欣, 贺娟, 金山, 王若澜, 罗奇彪, 夏伟. 失巢凋亡相关LncRNAs在肺腺癌中的预后价值及免疫浸润分析[J]. 肿瘤防治研究, 2024, 51(1): 34-42. DOI: 10.3971/j.issn.1000-8578.2024.23.0677
LI Xin, HE Juan, JIN Shan, WANG Ruolan, LUO Qibiao, XIA Wei. Prognostic Value and Immune Infiltration of Anoikis-related LncRNAs in Lung Adenocarcinoma[J]. Cancer Research on Prevention and Treatment, 2024, 51(1): 34-42. DOI: 10.3971/j.issn.1000-8578.2024.23.0677
Citation: LI Xin, HE Juan, JIN Shan, WANG Ruolan, LUO Qibiao, XIA Wei. Prognostic Value and Immune Infiltration of Anoikis-related LncRNAs in Lung Adenocarcinoma[J]. Cancer Research on Prevention and Treatment, 2024, 51(1): 34-42. DOI: 10.3971/j.issn.1000-8578.2024.23.0677

失巢凋亡相关LncRNAs在肺腺癌中的预后价值及免疫浸润分析

基金项目: 

云南省基础研究计划 202301AY070001-099

详细信息
    作者简介:

    李欣(1999-),女,硕士在读,主要从事临床药学研究,ORCID: 0009-0006-5271-3696

    通信作者:

    夏伟(1980-),男,硕士,副主任药师,主要从事临床药学研究,E-mail: xiaweisj@163.com, ORCID: 0009-0008-4146-7738

  • 中图分类号: R734.2

Prognostic Value and Immune Infiltration of Anoikis-related LncRNAs in Lung Adenocarcinoma

Funding: 

Yunnan Fundamental Research Projects 202301AY070001-099

More Information
  • 摘要:
    目的 

    探究失巢凋亡相关的长链非编码RNA(arlncRNAs)在肺腺癌中的预后价值和免疫浸润分析。

    方法 

    从TCGA数据库下载肺腺癌的RNA-seq数据及临床信息,从GeneCards和Harmonizome数据库获取失巢凋亡相关基因。通过共表达分析、差异分析和WGCNA分析,筛选与肺腺癌发生密切相关的差异表达的arlncRNAs。基于arlncRNAs构建预后风险模型,对其预测效能进一步验证。最后利用共识聚类识别肺腺癌失巢凋亡相关的分子亚型。

    结果 

    确定了7个预后arlncRNAs,其建立的预后风险模型、ROC曲线AUC值均大于0.7。生存分析和免疫浸润分析发现,低风险患者的总生存率较高,具有较高的免疫浸润,对低风险组患者可能有更好的免疫治疗效果。药物敏感性分析表明,高风险组患者对常用的化疗药更敏感。根据模型基因的表达,通过共识聚类确定了亚型C1和C2,C1显示较好的预后。

    结论 

    7个arlncRNAs建立的预后风险模型能有效预测肺腺癌患者的预后。免疫相关和药物敏感性分析结果,为肺腺癌患者精确的个体化治疗提供参考依据。

     

    Abstract:
    Objective 

    To explore the prognostic value and immune infiltration landscape of anoikis-related long noncoding RNAs (arlncRNAs) in lung adenocarcinoma.

    Methods 

    RNA-seq and clinical data of lung adenocarcinoma were downloaded from the TCGA database, and anoikis-related genes were obtained from the GeneCards and Harmonizome databases. Coexpression, differential, and WGCNA analyses were performed to screen differentially expressed arlncRNAs closely related to the occurrence of lung adenocarcinoma. A prognostic risk model was then constructed based on the arlncRNAs, and its predictive efficacy was further validated. Finally, consensus clustering was used to identify the molecular subtypes associated with anoikis in lung adenocarcinoma.

    Results 

    Seven prognostic arlncRNAs were identified, and the prognostic risk models established based on them had AUC values of ROC curves greater than 0.7. Survival and immune infiltration analyses revealed that low-risk patients had high overall survival and immune infiltration, implying that they experienced good immune treatment effects. Drug sensitivity analysis showed that the high-risk patients were more sensitive to commonly used chemotherapeutic agents than the low-risk patients. According to the expression of model genes, subtypes C1 and C2 were identified through consensus clustering, and C1 showed a good prognosis.

    Conclusion 

    The prognostic risk model based on the seven arlncRNAs can effectively predict the prognosis of lung adenocarcinoma patients. The results of immune-related and drug sensitivity analyses provide a reference for the precise individualized treatment of patients with lung adenocarcinoma.

     

  • Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    李欣:文章设计与撰写
    贺娟:数据分析解释、文章撰写
    金山:数据分析、文章修改
    王若澜:实验设计、文章修改
    罗奇彪:文章修改
    夏伟:指导及审阅文章
  • 图  1   差异表达的arlncRNAs与关键模块arlncRNAs的维恩图

    Figure  1   Venn diagram of differentially expressed arlncRNAs versus key module arlncRNAs

    图  2   基于预后相关的arlncRNAs构建风险模型

    Figure  2   Constructing a risk model based on prognostic-related arlncRNAs

    图  3   训练集和两个验证集的风险评分分布、生存状态和生存时间的评估

    Figure  3   Evaluation of risk score distribution, survival status, and survival time for training set and two validation sets

    图  4   整个TCGA数据集中高、低风险患者不同临床病理特征的生存分析

    Figure  4   Survival analysis of high- and low- risk patients in the entire TCGA dataset according to different clinicopathological characteristics

    图  5   风险模型性能的评估

    Figure  5   Evaluation of the risk model performance

    图  6   列线图的构建和验证

    Figure  6   Construction and validation of nomogram

    图  7   高、低风险组之间的基因集富集分析

    Figure  7   Gene set enrichment analysis between high- and low-risk groups

    图  8   高、低风险组患者的免疫浸润和药物敏感性分析

    Figure  8   Immune infiltration and drug sensitivity analysis of patients in high- and low-risk groups

  • [1]

    Li C, Lei S, Ding L, et al. Global burden and trends of lung cancer incidence and mortality[J]. Chin Med J (Engl), 2023, 136(13): 1583-1590. doi: 10.1097/CM9.0000000000002529

    [2]

    Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660

    [3]

    Bodor JN, Kasireddy V, Borghaei H. First-Line Therapies for Metastatic Lung Adenocarcinoma Without a Driver Mutation[J]. J Oncol Pract, 2018, 14(9): 529-535. doi: 10.1200/JOP.18.00250

    [4]

    Li Y, Yang Y, Ma Q, et al. HNRNPK/CLCN3 axis facilitates the progression of LUAD through CAF-tumor interaction[J]. Int J Biol Sci, 2022, 18(16): 6084-6101. doi: 10.7150/ijbs.76083

    [5]

    Yan H, Bu P. Non-coding RNA in cancer[J]. Essays Biochem, 2021, 65(4): 625-639. doi: 10.1042/EBC20200032

    [6]

    Soghli N, Yousefi T, Abolghasemi M, et al. NORAD, a critical long non-coding RNA in human cancers[J]. Life Sci, 2021, 264: 118665. doi: 10.1016/j.lfs.2020.118665

    [7]

    Chi Y, Wang D, Wang J, et al. Long Non-Coding RNA in the Pathogenesis of Cancers[J]. Cells, 2019, 8(9): 1015. doi: 10.3390/cells8091015

    [8]

    Yao Z, Zhang Y, Xu D, et al. Research Progress on Long Non-Coding RNA and Radiotherapy[J]. Med Sci Monit, 2019, 25: 5757-5770. doi: 10.12659/MSM.915647

    [9]

    Lee HY, Son SW, Moeng S, et al. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer[J]. Int J Mol Sci, 2021, 22(2): 627. doi: 10.3390/ijms22020627

    [10]

    Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression[J]. Biochim Biophys Acta, 2013, 1833(12): 3481-3498. doi: 10.1016/j.bbamcr.2013.06.026

    [11]

    Zuo Y, Fu S, Zhao Z, et al. Sarcomatoid-associated gene risk index for clear cell renal cell carcinoma[J]. Front Genet, 2022, 13: 985641. doi: 10.3389/fgene.2022.985641

    [12]

    Wilkerson MD, Hayes DN. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking[J]. Bioinformatics, 2010, 26(12): 1572-1573. doi: 10.1093/bioinformatics/btq170

    [13]

    Denisenko TV, Budkevich IN, Zhivotovsky B. Cell death-based treatment of lung adenocarcinoma[J]. Cell Death Dis, 2018, 9(2): 117. doi: 10.1038/s41419-017-0063-y

    [14]

    Luo Z, Ye X, Shou F, et al. RNF115-mediated ubiquitination of p53 regulates lung adenocarcinoma proliferation[J]. Biochem Biophys Res Commun, 2020, 530(2): 425-431. doi: 10.1016/j.bbrc.2020.05.061

    [15]

    Shi T, Zhang C, Xia S. The potential roles and mechanisms of non-coding RNAs in cancer anoikis resistance[J]. Mol Cell Biochem, 2022, 477(5): 1371-1380. doi: 10.1007/s11010-022-04384-6

    [16]

    Adeshakin FO, Adeshakin AO, Afolabi LO, et al. Mechanisms for Modulating Anoikis Resistance in Cancer and the Relevance of Metabolic Reprogramming[J]. Front Oncol, 2021, 11: 626577. doi: 10.3389/fonc.2021.626577

    [17]

    Chen Z, Hu Z, Sui Q, et al. LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/glycolysis axis in lung adenocarcinoma[J]. Int J Biol Sci, 2022, 18(2): 522-535. doi: 10.7150/ijbs.67556

    [18]

    Wang G, Li X, Yao Y, et al. FAM83A and FAM83A-AS1 both play oncogenic roles in lung adenocarcinoma[J]. Oncol Lett, 2021, 21(4): 297. doi: 10.3892/ol.2021.12558

    [19]

    Wang W, Zhao Z, Xu C, et al. LncRNA FAM83A-AS1 promotes lung adenocarcinoma progression by enhancing the pre-mRNA stability of FAM83A[J]. Thorac Cancer, 2021, 12(10): 1495-1502. doi: 10.1111/1759-7714.13928

    [20]

    Chen J, Li W, Liu B, et al. Low LINC02147 expression promotes the malignant progression of oral submucous fibrosis[J]. BMC Oral Health, 2022, 22(1): 316. doi: 10.1186/s12903-022-02346-4

    [21]

    Zhang J, Li S, Zhang L, et al. RBP EIF2S2 Promotes Tumorigenesis and Progression by Regulating MYC-Mediated Inhibition via FHIT-Related Enhancers[J]. Mol Ther, 2020, 28(4): 1105-1118. doi: 10.1016/j.ymthe.2020.02.004

    [22]

    Wu G, Wang Q, Zhu T, et al. Identification and Validation of Immune-Related LncRNA Prognostic Signature for Lung Adenocarcinoma[J]. Front Genet, 2021, 12: 681277. doi: 10.3389/fgene.2021.681277

    [23]

    Yuan K, Wang X, Dong H, et al. Selective inhibition of CDK4/6: A safe and effective strategy for developing anticancer drugs[J]. Acta Pharm Sin B, 2021, 11(1): 30-54. doi: 10.1016/j.apsb.2020.05.001

    [24]

    Zheng PF, Hong XQ, Liu ZY, et al. m6A regulator-mediated RNA methylation modification patterns are involved in the regulation of the immune microenvironment in ischaemic cardiomyopathy[J]. Sci Rep, 2023, 13(1): 5904. doi: 10.1038/s41598-023-32919-4

    [25]

    Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting[J]. Nat Rev Immunol, 2006, 6(11): 836-848. doi: 10.1038/nri1961

    [26]

    Booy S, Hofland L, van Eijck C. Potentials of interferon therapy in the treatment of pancreatic cancer[J]. J Interferon Cytokine Res, 2015, 35(5): 327-339. doi: 10.1089/jir.2014.0157

    [27]

    Borden EC. Interferons α and β in cancer: therapeutic opportunities from new insights[J]. Nat Rev Drug Discov, 2019, 18(3): 219-234. doi: 10.1038/s41573-018-0011-2

    [28]

    Lazear HM, Schoggins JW, Diamond MS. Shared and Distinct Functions of TypeⅠ and Type Ⅲ Interferons[J]. Immunity, 2019, 50(4): 907-923. doi: 10.1016/j.immuni.2019.03.025

    [29]

    Xu Y, Liu R. Analysis of the role of m6A and lncRNAs in prognosis and immunotherapy of hepatocellular carcinoma[J]. Heliyon, 2022, 8(9): e10612. doi: 10.1016/j.heliyon.2022.e10612

    [30]

    Critchley-Thorne RJ, Simons DL, Yan N, et al. Impaired interferon signaling is a common immune defect in human cancer[J]. Proc Natl Acad Sci U S A, 2009, 106(22): 9010-9015. doi: 10.1073/pnas.0901329106

图(8)
计量
  • 文章访问数:  1786
  • HTML全文浏览量:  764
  • PDF下载量:  641
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-24
  • 修回日期:  2023-07-25
  • 网络出版日期:  2024-02-25
  • 刊出日期:  2024-01-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭