Preservation of Limb Growth Potential in Treatment of Pediatric Osteosarcoma Around the Knee: Research Progress and Future Prospect
-
摘要:
影像学的发展、外科技术的进步、多药物联合化疗以及术后肢体功能康复的密切配合,使保肢后肿瘤局部复发率和患者的生存率达到了与截肢相同的临床结果,保肢已成为现代肢体恶性骨肿瘤治疗的流行趋势。膝关节周围,包括股骨远端和胫骨近端,是骨肉瘤最好发的部位。瘤段截除后使用金属假体置换替代骨缺损是保肢最常用的方法,也是患者术后迅速恢复肢体功能最可靠的保肢手段。本篇讨论的主要是临床上面临的儿童骨肉瘤保肢技术的一个挑战,如何最大限度地保留儿童患肢肢体生长潜能,从而减少日后双下肢肢体不等长问题,是保肢技术发展几十年来最前沿的精准医疗技术跨越之一。根据股骨远端肿瘤与骨骺生长板之间的距离牺牲或保留膝关节,保留肢体生长潜能,3D打印重建假体越来越受到青睐。本文对儿童膝关节骨肉瘤的外科治疗进展及未来发展方向进行总结,以期对骨肿瘤医生治疗该部位疾病提供一定帮助。
Abstract:With the development of imaging technology, advancements in surgical techniques, application of multidrug chemotherapy, and collaboration in postoperative rehabilitation, the local recurrence rate and survival of patients with osteosarcoma after limb-sparing surgery are comparable to those of patients after amputation. The area around the knee joint, including the distal portion of the femur and the proximal portion of the tibia, is a typical site of involvement for osteosarcoma. Metal prosthetic replacement is the most common method to reconstruct bone defect after tumor resection, which provides rapid recovery of limb function after surgery. This article mainly discusses the clinical challenge of limb-saving technology for pediatric osteosarcoma. It also describes how to optimally preserve the growth potential of children’s affected limbs to reduce the future limb length discrepancy. Limb-sparing technology is one of the most cutting-edge precision medical technologies in the industry. Sacrificing or preserving the knee joint according to the distance between the tumor of distal femur and the epiphyseal growth plate, retaining the potential for limb growth, 3D-printed reconstructed prostheses are becoming increasingly popular. This article summarizes the progress and future development in the surgical treatment of pediatric osteosarcoma around the knee to offer insights for orthopedic treatment of this disease.
-
Key words:
- Pediatric osteosarcoma /
- Limb salvage /
- Growth potential /
- Surgical treatment /
- Future development
-
0 引言
骨肉瘤为罕见肿瘤,发病率为(3~4.5)/百万,是儿童和青少年最常见的原发恶性骨肿瘤,好发于青春期骨骼生长速度最快的年龄段(0~9岁和10~24岁,每百万人群分别为1.9和6.7)[1]。最常见的发病部位为长骨的干骺端,其中约50%的病变发生在膝关节周围,包括股骨远端和胫骨近端。典型的影像学表现为干骺端成骨性骨破坏,可侵犯或突破骨骺生长板,骨外软组织包块形成,可见典型的“Godman”三角或“日光射线”现象,见图1。新辅助化疗的开展,使患者五年生存率由低于20%升高到60%,且90%以上的患者可以达到保肢的要求,保肢和既往截肢的局部复发率几乎相同(<5%)[2-3]。保肢不仅保留了患者的肢体,最大的优点还在于保证了患者的心理健康。随着影像学和外科技术的飞速发展,保肢也进入了精准医疗的发展轨道。儿童保肢的实施理念不同于成人,成人骨骺已闭合,肢体不再生长,术后不存在肢体不等长问题,但对于儿童,其处理原则和手术方法具有其独特性。
图 1 典型儿童骨肿瘤Figure 1 Typical cases of children osteosarcomaA: typical case of osteosarcoma of distal femur in a child. Osteogenic destruction, soft tissue mass outside the bone, with the “sunray” phenomenon visible, and the tumor invading the physeal growth plate; B: typical pediatric proximal tibial osteosarcoma, osteogenic destruction, with the “Godman triangle” formed, and the tumor not penetrating the physeal growth plate.1 儿童骨肉瘤术前肢体生长潜能评估
女孩骨骼生长最快的时期是12~14岁,男孩是14~16岁。正常下肢的长度70%依赖膝关节周围骨骺的生长(股骨远端占40%,胫骨近端30%),而股骨近端和胫骨远端骨骺各占15%[4]。举例说明,一个10岁男孩的股骨远端骨肉瘤切除后,由于股骨远端骨骺每年生长1.6 cm,到16岁停止生长时,患肢比对侧正常肢体将缩短9.6 cm。第一次手术计划时,术中可以将患侧股骨假体比对侧股骨有意延长2 cm,还是相差7 cm左右。由于双侧肢体相差2 cm之内,可以通过垫高鞋垫来改善步态,因此对患者延长5~6 cm即可满足日后生活需求。14岁的股骨远端骨肉瘤男孩,到16岁停止生长,通过术中有意延长2 cm的假体调节,骨骼成熟停止生长后可以达到与肢体等长,因此此年龄段患者可以使用成人假体,避免日后需要将儿童假体更换为成人假体的手术可能。10岁之前的患者,由于尚未到青春肢体快速增长期,肢体短缩差距预测准确性低,可以暂且采取术中最大限度延长肢体的方法(2~3 cm),肿瘤安全期过后再行肢体延长手术。
2 手术计划
对于膝关节周围骨肉瘤,在新辅助化疗后采用影像学检查方法,一方面评估肿瘤的化疗反应及保肢的可行性,另一方面评估肿瘤与骨骺生长板的关系(图2)[5]。以股骨远端骨肉瘤为例,在遵循肿瘤广泛切除原则的基础上,大多数情况下需要将股骨远端骨骺与肿瘤一并切除(type Ⅱ 和type Ⅲ),如何保留胫骨近端的骨骺生长潜能是本文讨论的第一个重要内容。少数情况下对于化疗反应良好的患者,根据肿瘤与股骨远端骨骺生长板的距离,在达到肿瘤广泛切除目的的同时,存在保留此生长板的可能(type Ⅰ),当然也有可能通过生长板或生长板的远侧截骨。但无论生长板是否保留,患者的膝关节是保留的,重建中心转变为中远段股骨干重建(type Ⅱ)。这是本文讨论的第二个重要内容。
图 2 根据肿瘤边界距离骺板及关节面的距离进行分型Figure 2 Classification of tumors according to distance between tumor boundary and growth plate and joint surfaceA: type Ⅰ tumors have a safe distance from the growth plate, and the growth plate can be preserved after bone resection; B: type Ⅱ tumors are located near the growth plate, and bone resection can be performed through the growth plate or below it or within the joint; C: type Ⅲ tumors penetrate the growth plate, the joint surface cannot be preserved, and intra-articular tumor resection is required.由于股骨远端骨骺的消失,孩子年龄越小,日后双下肢不等长(Limb length discrepancy, LLD)的程度越明显,进而出现跛行步态加重、骨盆倾斜和脊柱侧弯等并发症(图3)[6]。
3 瘤段截除后骨缺损重建方法
瘤段截除后,骨缺损修复的方法多种多样,包括生物学和非生物学重建方法。前者包括瘤骨灭活再植、大段异体骨关节移植、骨搬运、关节融合等;后者为肿瘤假体置换,是目前保肢最常用的方式。以下对目前临床中常用的手术重建方式进行梳理、总结,以期能为骨肿瘤医生治疗该部位疾病提供一定帮助,为将来的创新发展起到启示作用。
3.1 牺牲膝关节的骨关节切除重建
因肿瘤侵犯骨骺或与骨骺距离太近,为了达到安全边界,肿瘤连同骨骺、关节连接结构一并切除,这是临床上最常见的情况(type Ⅱ和Ⅲ)。为了尽量保留膝关节对侧骨骺板生长潜能,可进行以下重建方案:
3.1.1 瘤壳灭活再植或异体骨关节移植
2000年前这两种方法临床常用,那时的肿瘤假体在国内刚刚起步,还是定制假体,生产厂家少,制作时间长,无法满足临床需求。主要操作步骤为:标本离体,清理掉肿瘤组织,使用高渗盐水或液氮进行瘤骨灭活[7],原位回植到缺损部位,并使用钢板或髓内钉进行固定(图4)。自体瘤骨无需购买,且匹配度高,术后排异反应和感染的发生率低,因此在当时那个年代应用较多。但缺点也很明显:局部肿瘤灭活可能不彻底、有增加局部复发的风险、术后化疗会影响骨愈合、骨折风险。异体骨关节多为成人骨骼,与儿童骨匹配度较差,术后存在排异、感染、不愈合、骨折等并发症(图5)。上述两种方法均保留了膝关节对侧正常骨骺的生长潜能,尽管术后需要长时间佩戴膝关节支具,但均存在膝关节不稳或脱位的并发症。这两种方法已基本摈弃。
3.1.2 发展中的儿童关节假体重建
(1)半关节假体
鉴于上述灭活瘤骨骨壳和异体半关节移植的不足,使用半关节假体替代骨缺损在2000年后逐步增多[8-10]。半关节假体为定制型,缺损段和假体柄一体化,假体柄为骨水泥固定。虽然仍会出现膝关节不稳,但由于儿童体重轻,适应能力强,很多患者获得了良好的术后功能,且使用超过十年(图6),但显而易见的缺点是一体化的假体日后翻修困难。近几年的发展一是将假体缺损段改为组配型,有利于安装拆卸,假体柄也有非骨水泥固定柄可选择。二是为减少膝关节不稳的发生,通过精心设计假体长度及关节面大小、术中尽量保留关节周围韧带组织、使用LARS韧带重建关节周围韧带(图7),或穿过假体上预制的孔道及关节对侧骨上的开通孔道重建交叉韧带,并重建侧副韧带[9-10]。经过这些改进,膝关节稳定性进一步加强,半数以上的患者可取得满意的功能评分[10-11]。三是将半关节改进为儿童铰链型假体,增加膝关节稳定性。
(2)儿童铰链型膝关节假体(股骨远端或胫骨近端)
上述半关节假体虽然经过改进,但仍有不同程度的膝关节不稳和膝关节脱位的发生,且术后患者需要长时间外支具固定。为解决这个问题,国内自2015年开始设计应用儿童股骨远端铰链膝关节假体[6]。假体为组配式,股骨柄采用水泥固定或生物固定于股骨髓腔,其设计理念不同于成人铰链膝关节假体的部位在于胫骨侧,胫骨侧平台骨质不切除,且不进行胫骨近端髓腔处理。将简易“T”型胫骨假体的假体柄穿过胫骨骨骺进入髓腔内,同时两侧各有一个防旋转针(图8)。2021年我们报道了34例接受了此假体重建儿童股骨远端骨肉瘤患者,平均随访2.8年,膝关节稳定,患者可进行日常生活、慢跑、骑自行车等,术后膝关节屈曲角度为100°~130°,术后平均MSTS 93评分为26.7[6]。
胫骨近端儿童型假体与股骨远端假体类似,目的也是增强胫骨近端儿童假体置换后膝关节稳定性,并尽量减少对膝关节对侧股骨远端骨骺生长潜能的影响(图9)。与上述股骨远端儿童铰链假体的设计理念一样,简易“T”型股骨侧假体也将尽量减少对股骨侧骨骺的影响。假体柄采用一个直径8~10 mm的光滑细柄,长度100 mm,股骨柄外翻5°。股骨侧无需截骨,确定好髓腔位置后,直接将股骨假体柄打入。该假体于2019年投入临床设计使用,术后短期临床效果满意,患者正处在随访阶段。
经历灭活再植/异体骨关节移植——人工半关节假体——儿童铰链型膝关节假体过程,肿瘤治疗安全性和膝关节稳定性得到了逐步加强。假体设计由定制一体化向组配式发展,假体柄的固定方式由单纯骨水泥固定发展为有生物型固定柄可以选择。膝关节对侧的骨骺生长潜能保留可以达到74.3%~87.5%[12]。如何完全消除对对侧骨骺的影响,还需要进一步研究。
3.2 保留关节的瘤段切除
少数情况下股骨远端或胫骨近端骨肉瘤距离骨骺生长板或关节面尚有一定的距离(type Ⅰ 和Ⅱ),在患者化疗反应良好的前提下,可以考虑保留关节的瘤段切除手术(Joint-preservation surgery, JPS),重建也就类似于股骨干节段重建[13]。对化疗反应良好的type Ⅱ患者,有人尝试了更大胆的方法——经骨骺生长板截骨。以股骨远端骨肉瘤为例,根据核磁T1加权像图像上肿瘤边界到骺板及关节面的距离[12],保留关节的截骨方式分为三类(图2):(1)经干骺端截骨(肿瘤边界距离骺板≥10 mm),骺板保留;(2)经骺板截骨(肿瘤临近骺板,截骨边界距离关节面≥10 mm);(3)骺板下截骨(肿瘤侵犯部分骺板,截骨边界距离关节面≥10 mm)[14]。膝关节保留更能提供良好的肢体功能。第(2)和(3)类截骨情况在目前3D导板精准截骨和打印假体兴起的情况下,越来越受到骨肿瘤科医师的青睐。保留关节的方法优势非常明显,但对于选取第(2)和(3)类截骨方式需要非常慎重,毕竟增加了局部肿瘤复发的风险。骺板是否是阻挡骨肉瘤侵犯的屏障,研究早有定论:影像学上发现骺板侵犯的比例占44%,而术后病理显示穿透骺板的比例超过80%[15]。因此这种截骨方式的选择需要考虑多个因素,包括肿瘤大小、位置、病理类型、患者年龄、骨骺生长情况以及医疗团队的经验等。其适应证包括:(1)肿瘤对新辅助化疗有良好的反应。这是最重要的前提条件,表现为X光片显示大量硬化改变或边缘良好的肿瘤、磁共振成像(MRI)显示骨外肿瘤明显缩小、血管造影未见肿瘤显色,或201铊(201Tl)灌注造影检查未见肿瘤内显影[16];(2)可以达到精准截骨的要求,保留远端关节面长度>1 cm;(3)肿瘤安全切缘≥10 mm;(4)无远处转移(Enneking ⅡA期、ⅡB期)或存在可切除的远处转移病灶(Enneking Ⅲ期)。
2013年Bellanova等在个体化特异3D打印导板指导下精确截骨,4例膝关节周围骨肉瘤的切除边界均为阴性[17]。同年Wong等报道5例导航引导下保留关节面的膝关节骨肉瘤骺板下精确切割,虽然切割线距离肿瘤仅2 mm左右,但平均随访41个月无1例复发,平均MSTS评分为29分,无1例出现保留的关节面缺血性坏死[18]。虽然Andreou等在寻找骨肉瘤局部复发的危险因素的研究中,发现在1 355个骨肉瘤中有123个切缘非常临近肿瘤,但这并不是肿瘤局部复发的危险因素[19]。然而对于过于靠近肿瘤边界的、保留关节面的截骨线仍存在对肿瘤长期安全性的担忧。
3.2.1 经干骺端截骨保留骨骺生长板的缺损重建
两种重建方法:一是使用灭活瘤骨或异体骨联合自体腓骨移植重建,不失为一种较理想的生物学重建方法(图10);二是3D打印中段假体重建(图11)。插入到灭活瘤骨或异体骨骨髓腔的自体腓骨有良好的再生、塑形能力。该结构依靠钢板、螺钉给予灭活瘤骨或异体骨提供早期支撑,依靠自体腓骨塑形增粗、与灭活瘤骨或异体骨融合提供远期支撑。其中,较游离腓骨移植来说,带血管蒂的自体腓骨移植重建可能有更加明显的促骨愈合作用,但仍需长期随访验证。
图 10 12岁男孩股骨远端骨肉瘤Figure 10 A twelve-year-old boy with osteosarcoma of distal femurFollowing neoadjuvant therapy, segmental resection was performed while preserving the epiphyseal plate; tumor bone was inactivated, and autologous fibular grafting was utilized to reconstruct defects. The results revealed no recurrence of tumors, preservation of epiphyseal growth potential, and equal limb lengths on both sides two years after operation.图 11 10岁女孩右股骨中远段骨肉瘤Figure 11 A ten-year-old girl diagnosed with mid-distal right femoral osteosarcomaA: X-ray indicated bone destruction with visible Godman triangle; B: MRI revealed lesions located mid-femur with sufficient distance from the epiphysis; C: diaphyseal resection preserves growth plates while achieving satisfactory margins during tumor excision; D, E: reconstruction using a 3D-printed implant; F: postoperative imaging confirmed satisfactory positioning of the implant; G: follow-up imaging one and a half years after surgery.3.2.2 经骨骺生长板或生长板下截骨的缺损重建
随着现代影像学、导航技术以及3D打印技术的出现,骺板或骺板下截骨保留关节面的“极限”保肢技术在临床上受到了青睐(图12)。术前根据影像学资料,规划、设计的3D打印定制的假体匹配度好、机械强度高,多孔结构可达到骨长入的效果。随着近些年3D打印技术的发展,定制假体的制造周期缩短、生产成本下降,技术逐渐成熟。可术前根据影像学资料详细规划截骨位置,使用定制3D截骨导板精确截骨[20]。3D打印技术的出现解决了人工假体与干骺端的长期稳定连接及融合的难题。首先,3D打印技术可以制备出大小、形状与缺损完全匹配的假体;此外,该技术可以通过打印多孔金属小梁结构,随着骨长入的实现,达到长期、永久的固定效果。远期的假体松动和感染等并发症还需要长期的随访观察。
3.3 骨搬运
Tsuchiya等描述了三种类型的骨搬运。骨搬运主要应用于四肢中段骨缺损,晚期愈合后能达到生物重建的效果,远期并发症较少[21],但存在针道感染、骨骺损伤、局部复发、骨折、延迟愈合、骨溶解、延迟愈合、下地时间延长等可能。骨肿瘤切除导致的骨缺损,一方面由于缺损较大,另一方面病变多数靠近干骺端,肿瘤切除骺残留骨很难进行牢固固定,失败率比较高。此外,由于儿童骨肉瘤患者大多数要进行术后辅助化疗,对骨愈合有一定影响,延长了骨愈合的时间。在保留关节面的手术中使用难度极大,成功率不高,文献中仅为个案报道。
4 肢体不等长的处理方法
4.1 增高鞋(垫)的使用
一般作为初次肿瘤切除后2年内的选择[22]。LLD小于2.2 cm时可由骨盆倾斜代偿[23],患者通常步态正常。当LLD继续增大时,可定制增高鞋进行“外源性”矫正,但每隔一段时间就需要调整增高鞋垫(图13)来匹配LLD,达到步态正常的效果。
4.2 “追随”对侧肢体生长速度的可延长关节假体
可延长假体的设计理念是术后定期多次延长假体,达到和对侧肢体相同的“生长”速度,是解决LLD的一个策略,适用于预计术后下肢短缩将超过3 cm的患者(图14),但较高的伤口并发症和假体周围感染率是文献较多报道的可延长假体并发症[24-28]。可延长假体经历了有创、微创、无创的发展阶段,最早于1976年开始应用[29]。第一代的可延长假体代表是英国生产的SEER(Stanmore extensible endoprosthetic replacement),第二代假体为组配式假体,其代表为HMRS(Howmedica modular resection system)。后来设计的自动可延长假体,其作用机制是膝关节屈曲运动带动棘轮机构,通过螺杆来延长假体。随后出现了Phenix无创可延长假体,经多次改进,现为Repiphysis假体,此假体可应用体外磁场来延长假体。大多数可延长假体都是定制的,制造技术和延长机制导致假体具有最小长度的限制,比如延长量为50 mm的Stanmore假体的最小基本长度为190 mm(组配假体)或177 mm(定制假体)。如果切除的骨不够长,无法使用可延长假体,要安装这种可延长假体,必须牺牲更长的股骨或胫骨。对于有创延长假体的应用,需进行多次切开手术操作,使感染发生率增高。既往研究所报道的并发症包括无菌性松动、假体折断或深部感染等,假体翻修率高达22%~83%[4,24-25,29-31]。无创可延长假体并发症的发生率仍然很高[26,31],且只能使用骨水泥固定假体柄,因为生物固定时的剧烈打压操作可能会损害延长装置。同时,使用电磁机制的无创可延长假体的患者术后无法进行核磁检查,影响术后肿瘤学评估。另一方面,可延长假体价格相对昂贵,部分患者难以承受,国内应用较少;且由于较高的并发症发生率,许多儿童患者在接受可延长假体重建后由于各种原因,比如局部复发、远处转移、伤口感染等,约半数的患者并没有实现肢体延长的最终结果。
4.3 传统组配型假体
传统组配型假体需多次切开手术更换假体延长段解决LLD(图15)。手术要求将原切口切开,脱位膝关节假体,切除假体周围瘢痕,充分松解,股骨远端假体可以达到延长2 cm,胫骨近端假体可以达到延长1 cm的结果。但多次手术延长有增加假体周围感染的风险。
图 15 6岁女孩股骨远端骨肉瘤儿童铰链假体置换Figure 15 A six-year-old girl with osteosarcoma of distal femur undergoing hinge prosthesis replacementFive years later, the patient presented with a discrepancy in lower limb length of 6 cm. A limb-lengthening procedure was performed, during which a modular prosthetic extension segment was replaced, resulting in an additional elongation of 2 cm. Preoperative and postoperative photographs (A, B) and X-ray images (C, D) are provided for reference.4.4 骨延长
对于肿瘤切除术后远期出现LLD的患者,由于假体重建,髓内固定柄对外固定架的置钉有影响,通常需要对同侧非缺损长骨进行延长,如对胫骨上段肿瘤患者进行股骨延长(图16)。由于患者术后肢体发育及肌肉状况较健侧差,术前需要详细评估骨质条件,避免延长过程中出现钢钉松动、延长失效问题。
图 16 12岁男孩胫骨近端骨肉瘤半关节假体置换Figure 16 A twelve-year-old boy undergoing proximal tibial osteosarcoma resection via hemiarthroplastySix years later, the discrepancy in length between the lower limbs reached 7 cm. An external fixation device was applied to the femur of the affected side to extend it until both lower limbs were approximately equal in length.4.5 对侧骨骺固定术
对侧骨骺固定术是解决LLD的另一选择,然而,这种方法很少用于小儿膝关节周围骨肉瘤,因为这会导致患者整体身高的损失。为使健侧下肢减少生长长度,减小LLD的程度,手术需要对健侧股骨进行手术,尽管创伤较小,多数患者及家属难以接受。
5 未来发展方向
儿童膝关节周围骨肉瘤的保肢较成人复杂且困难,其治疗正处于转型升级的关键阶段,肢体生长潜能的保留已成为治疗的重要目标。此外,未来的治疗策略需要依赖于技术创新和跨学科合作,以实现患者长期生存和生活质量的双重提升。一是机器人辅助肿瘤切除更精准,能保留骺板生长能力、减少不等长、保留关节面、提高膝关节功能;二是无创可延长假体的设计和发展,仍是减少患者多次手术创伤和假体感染风险、减少肢体不等长的一个方向;三是未来3D打印假体的发展应结合生物材料和组织工程技术的发展,已有大量关于具备生物活性的组织工程支架材料的基础和临床前研究,具备复合功能的组织工程材料是未来的研究方向。目标材料早期有提供初期强度的功能及能发挥抗肿瘤作用,随后发挥其生物活性促进骨长入;后期支架材料缓慢降解,新生骨完全占据骨缺损,达到长久固定。可以看出,治疗儿童膝关节周围骨肉瘤的手段多样,具体到某一位患者仍需进行个性化考量,术前进行肢体生长长度的预测,并进行多学科的讨论,制定适合患者的最佳方案。
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:赵志庆:文章撰写及修改,基金支持郭 卫:思路设计,文章修改燕太强:主题设定、文章审阅及修改 -
-
[1] Ayerza MA, Farfalli GL, Aponte-Tinao L, et al. Does increased rate of limb-sparing surgery affect survival in osteosarcoma?[J]. Clin Orthop Relat Res, 2010, 468(11): 2854-2859. doi: 10.1007/s11999-010-1423-4
[2] Zhao ZQ, Yan TQ, Guo W, et al. Surgical treatment of primary malignant tumours of the distal tibia: clinical outcome and reconstructive strategies[J]. Bone Joint J, 2018, 100-B(12): 1633-1639. doi: 10.1302/0301-620X.100B12.BJJ-2018-0779.R1
[3] Opyrchał J, Bula D, Dowgierd K, et al. Case Series: Fibula Free Flap with Bone Allograft as the Gold Standard in Lower Limb-Salvage Surgery for Adolescent Patients with Primary Bone Tumors Located within Tibial Diaphysis: Technical Modifications and Short-Term Follow-Up[J]. J Clin Med, 2024, 13(14): 4217. doi: 10.3390/jcm13144217
[4] Arkader A, Viola DC, Morris CD, et al. Coaxial extendible knee equalizes limb length in children with osteogenic sarcoma[J]. Clin Orthop Relat Res, 2007, 459: 60-65. doi: 10.1097/BLO.0b013e3180514c37
[5] Yoshida Y, Osaka S, Tokuhashi Y. Analysis of limb function after various reconstruction methods according to tumor location following resection of pediatric malignant bone tumors[J]. World J Surg Oncol, 2010, 8: 39. doi: 10.1186/1477-7819-8-39
[6] Zhao Z, Yang Y, Yan T, et al. Outcomes of Fixed-Hinged Knee Prosthesis for Distal Femoral Osteosarcoma in Skeletally Immature Patients: First Results[J]. J knee Surg, 2023, 36(1): 68-78. doi: 10.1055/s-0041-1729623
[7] Qu H, Guo W, Yang R, et al. Reconstruction of segmental bone defect of long bones after tumor resection by devitalized tumor-bearing bone[J]. World J Surg Oncol, 2015, 13: 282. doi: 10.1186/s12957-015-0694-3
[8] Lozano-Calderón SA, Kenan S. Total condylar unipolar expandable prosthesis for proximal tibia malignant bone tumors in early childhood[J]. Orthopedics, 2011, 34(12): e899-905.
[9] Li D, Ji T, Guo W, et al. Outcomes of Semiknee Replacement in Skeletally Immature Bone Sarcoma Patients[J]. J Knee Surg, 2023, 36(10): 1052-1059. doi: 10.1055/s-0042-1748823
[10] 戴双武, 邵欣欣, 李浩淼, 等. LARS韧带联合半关节置换治疗儿童膝关节周围恶性肿瘤的初步研究[J]. 中华骨科杂志, 2018, 38(6): 370-377. [Dai SW, Shao XX, Li HM, et al. Preliminary research of combining LARS and semi-joint replacement for malignant tumor around the knee in children[J]. Zhonghua Gu Ke Za Zhi, 2018, 38(6): 370-377.] Dai SW, Shao XX, Li HM, et al. Preliminary research of combining LARS and semi-joint replacement for malignant tumor around the knee in children[J]. Zhonghua Gu Ke Za Zhi, 2018, 38(6): 370-377.
[11] 杨荣利, 徐万鹏, 郭卫, 等. 特制半关节假体置换在儿童膝关节恶性骨肿瘤中的应用[J]. 中国骨肿瘤骨病, 2005, 4(1): 1-4. [Yang RL, Xu WP, Guo W, et al. Semi-joint prosthesis replacement in the treatment of children's malignant tumors around the knee[J]. Zhongguo Gu Zhong Liu Gu Bing, 2005, 4(1): 1-4.] Yang RL, Xu WP, Guo W, et al. Semi-joint prosthesis replacement in the treatment of children's malignant tumors around the knee[J]. Zhongguo Gu Zhong Liu Gu Bing, 2005, 4(1): 1-4.
[12] Hoffer FA, Nikanorov AY, Reddick WE, et al. Accuracy of MR imaging for detecting epiphyseal extension of osteosarcoma[J]. Pediatr Radiol, 2000, 30(5): 289-298. doi: 10.1007/s002470050743
[13] Takeuchi A, Yamamoto N, Hayashi K, et al. Joint-preservation surgery for pediatric osteosarcoma of the knee joint[J]. Cancer Metastasis Rev, 2019, 38(4): 709-722. doi: 10.1007/s10555-019-09835-z
[14] Takeuchi A, Yamamoto N, Hayashi K, et al. Growth of epiphysis after epiphyseal-preservation surgery for childhood osteosarcoma around the knee joint[J]. BMC Musculoskelet Disord, 2018, 19(1): 185. doi: 10.1186/s12891-018-2109-4
[15] Jesus-Garcia R, Seixas MT, Costa SR, et al. Epiphyseal plate involvement in osteosarcoma[J]. Clin Orthop Relat Res, 2000(373): 32-38.
[16] Miwa S, Takeuchi A, Shirai T, et al. Prognostic value of radiological response to chemotherapy in patients with osteosarcoma[J]. PLoS One, 2013, 8(7): e70015. doi: 10.1371/journal.pone.0070015
[17] Bellanova L, Paul L, Docquier PL. Surgical guides (patient-specific instruments) for pediatric tibial bone sarcoma resection and allograft reconstruction[J]. Sarcoma, 2013, 2013: 787653.
[18] Wong KC, Kumta SM. Joint-preserving tumor resection and reconstruction using image-guided computer navigation[J]. Clin Orthop Relat Res, 2013, 471(3): 762-773. doi: 10.1007/s11999-012-2536-8
[19] Andreou D, Bielack SS, Carrle D, et al. The influence of tumor- and treatment-related factors on the development of local recurrence in osteosarcoma after adequate surgery. An analysis of 1355 patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols[J]. Ann Oncol, 2011, 22(5): 1228-1235. doi: 10.1093/annonc/mdq589
[20] Wang C, Huang S, Yu Y, et al. Fluoroscopically calibrated 3D-printed patient-specific instruments improve the accuracy of osteotomy during bone tumor resection adjacent to joints[J]. 3D Print Med, 2024, 10(1): 15. doi: 10.1186/s41205-024-00216-z
[21] Tsuchiya H, Abdel-Wanis ME, Sakurakichi K, et al. Osteosarcoma around the knee. Intraepiphyseal excision and biological reconstruction with distraction osteogenesis[J]. J Bone Joint Surg Br, 2002, 84(8): 1162-1166. doi: 10.1302/0301-620X.84B8.0841162
[22] Ji T, Yang Y, Li DS, et al. Limb Salvage Using Non-hinged Endoprosthesis and Staged Correction of Leg-length Discrepancy for Children with Distal Femoral Malignant Tumors[J]. Orthop Surg, 2019, 11(5): 819-825. doi: 10.1111/os.12525
[23] Walsh M, Connolly P, Jenkinson A, et al. Leg length discrepancy--an experimental study of compensatory changes in three dimensions using gait analysis[J]. Gait Posture, 2000, 12(2): 156-161.
[24] Neel MD, Wilkins RM, Rao BN, et al. Early multicenter experience with a noninvasive expandable prosthesis[J]. Clin Orthop Relat Res, 2003(415): 72-81.
[25] Eckardt JJ, Kabo JM, Kelley CM, et al. Expandable endoprosthesis reconstruction in skeletally immature patients with tumors[J]. Clin Orthop Relat Res, 2000(373): 51-61.
[26] Torner F, Segur J M, Ullot R, et al. Non-invasive expandable prosthesis in musculoskeletal oncology paediatric patients for the distal and proximal femur. First results[J]. Inter Orthop, 2016, 40(8): 1683-1688. doi: 10.1007/s00264-016-3163-x
[27] Kong CB, Lee SY, Jeon DG. Staged lengthening arthroplasty for pediatric osteosarcoma around the knee[J]. Clin Orthop Relat Res, 2010, 468(6): 1660-1668. doi: 10.1007/s11999-009-1117-y
[28] Dukan R, Mascard E, Langlais T, et al. Long-term outcomes of non-invasive expandable endoprostheses for primary malignant tumors around the knee in skeletally-immature patients[J]. Arch Orthop Trauma Surg, 2022, 142(6): 927-936. doi: 10.1007/s00402-020-03712-z
[29] Cool WP, Carter SR, Grimer RJ, et al. Growth after extendible endoprosthetic replacement of the distal femur[J]. J Bone Joint Surg Br, 1997, 79(6): 938-942. doi: 10.1302/0301-620X.79B6.0790938
[30] Grimer RJ, Belthur M, Carter SR, et al. Extendible replacements of the proximal tibia for bone tumours[J]. J Bone Joint Surg Br, 2000, 82(2): 255-260. doi: 10.1302/0301-620X.82B2.9863
[31] Schindler OS, Cannon SR, Briggs TW, et al. Stanmore custom-made extendible distal femoral replacements. Clinical experience in children with primary malignant bone tumours[J]. J Bone Joint Surg Br, 1997, 79(6): 927-937. doi: 10.1302/0301-620X.79B6.0790927