-
摘要:
滋养层细胞表面抗原2(Trop2)是一种在正常组织中几乎不表达而在恶性实体肿瘤中高度表达的糖蛋白,且与其不良预后显著相关。目前,临床开发了多种针对Trop2的靶向疗法,例如抗Trop2抗体和靶向Trop2的抗体偶联药物(ADC),一些已经被批准或正在临床试验中用于癌症治疗。本文对Trop2的基因结构、作用机制及其在实体肿瘤中的临床研究和药物研发等方面进行阐述,为临床开发更加安全有效的针对Trop2的靶向药物提供参考。
Abstract:Trophoblast cell surface antigen 2 (Trop2) is a glycoprotein that is barely expressed in normal tissues but highly expressed in malignant tumors; it is remarkably associated with poor prognosis. Various targeted therapeutics against Trop2, such as anti-Trop2 antibodies and antibody-drug conjugate drugs targeting Trop2, have been developed, and some therapeutics have been approved or are in clinical trials for cancer treatment. In this review, we comprehensively discuss the gene structure, mechanism of action, clinical research, drug development, and other aspects of Trop2 to provide references for the clinical development of effective and safe Trop2-targeting drugs.
-
Key words:
- Trop2 /
- Cancer /
- Mechanism /
- Structure /
- Targeted therapy
-
0 引言
根据国际癌症研究机构(International Agency for Research on Cancer, IARC)的最新统计,2022年癌症新发病例约2 000万,死亡病率约为970万例,其中最常见的为肺癌(12.4%),其次是女性乳腺癌(11.6%)、结直肠癌(9.6%)、前列腺癌(7.3%)和胃癌(4.9%),预计2050年癌症新发病例将超过3 500万[1]。癌症发病率和死亡率的增加严重威胁人类身体健康,也造成了社会经济的重大损失。目前治疗癌症主要使用手术、放疗和化疗等技术手段,然而由于肿瘤易转移、复发和耐药性的存在,导致疗效并不理想[2-3]。
滋养层细胞表面抗原2(Trophoblast cell surface antigen 2, Trop2)是由染色体1p32上的基因肿瘤相关钙通道传感蛋白2(tumor-associated calcium signal transducer 2, TACSTD2)编码的36 kDa跨膜蛋白[4]。研究表明,Trop2在多种实体瘤中高表达,包括胃癌(Gastric cancer, GC)、乳腺癌(Breast cancer, BC)和宫颈癌(Cervical cancer, CC)等,其能通过参与多种细胞内信号通路,例如丝裂原活化蛋白激酶(Mitogen-activated protein kinases, MAPKs)和磷脂酰肌醇3-激酶(Phospoinositide 3-kinases, PI3K)等信号通路,从而促进肿瘤细胞的增殖、迁移和侵袭[5-8]。因其在实体瘤中高表达且与患者预后不良显著相关,Trop2已经成为癌症治疗非常有潜力的靶点。目前,针对Trop-2靶点开发了许多抗体偶联药物(Antibody-drug conjugate, ADC),如戈沙妥珠单抗(Sacituzumab govitecan, SG)和德达博妥单抗(Datopotamab deruxtecan, Dato-Dxd),均显示出有效的抗肿瘤活性。ADC药物由抗体、连接头和小分子细胞毒药物组成,被认为是一种高效且精确的抗癌治疗策略[9]。ADC作用机制为抗体与靶细胞表面的抗原结合,并通过内吞作用和溶酶体处理释放出细胞毒性物质,从而杀伤肿瘤细胞[10]。至今为止,SG是目前唯一一种被美国食品药品监督管理局批准用于治疗局部转移或者晚期三阴性乳腺癌(Triple-negative breast cancer, TNBC)患者的ADC类药物,这使得靶向Trop2的ADC药物研究成为热点[11]。临床研究显示,SG目前在多种实体瘤中具有抗肿瘤活性,比如BC、肺癌和尿路上皮癌。因此,本文将对Trop2在实体瘤中的表达、可能参与的信号通路及相关药物研发等方面进行概述,以期为开发其他实体瘤治疗药物提供参考。
1 Trop2在多种癌症中的表达
1.1 公共数据库分析Trop2在多种癌症中的表达
为了探索Trop2在各种实体瘤中的表达,我们利用SangerBox数据库(http://vip.sangerbox.com/login.html)比较了Trop2在正常组织和肿瘤组织中的表达,见图1,相比于正常组织,Trop2 mRNA表达水平在乳腺浸润性癌(BRCA)、宫颈鳞癌和腺癌(CESC)、肺腺癌(LUAD)、胆管癌(CHOL)和结肠癌(COAD)等癌症中的表达显著升高。随后,我们利用人类蛋白质图谱(Human Protein Atlas, HPA)数据库(https://www.proteinatlas.org/)分析了Trop2在细胞中的定位,见图2,Trop2主要定位于细胞质和细胞膜上,核仁和细胞囊泡中也可以检测到。
图 1 使用公共数据库分析Trop2在肿瘤组织和正常组织中的表达情况Figure 1 Expression of Trop2 in tumor and normal tissues analyzed using a public databaseData from the SangerBox database (http://vip.sangerbox.com/login.html). *: P<0.05, **P<0.01, ****: P<0.0001.1.2 Trop2在乳腺癌中的表达
Trop2基因表达范围广泛,几乎在所有BC亚型中均可检测到[12]。Aslan等通过免疫组织化学(Immunohistochemistry, IHC)评估了不同分子分型BC中Trop2蛋白表达水平,结果显示,50%的ER+、74%的HER2+和93%的TNBC样本均高表达Trop2蛋白[13]。Mertens等利用IHC对94例未经治疗的原发性浸润性BC进行Trop2染色,发现Trop2在各分子亚型的肿瘤中均有中高水平表达,且在各亚型的表达范围较广[14]。进一步研究发现,高表达Trop2与BC患者的不良预后显著相关。Lin等发现,在浸润性导管癌(Invasive ductal carcinoma, IDC)中,Trop2高表达与组织分级、P53状态、周期蛋白D1(Cyclin D1)状态、淋巴结转移、远处转移相关,且Trop2高表达、Cyclin D1高表达和淋巴结转移是IDC患者独立的预后因素[15]。Izci等研究也表明高表达Trop2的TNBC患者淋巴血管浸润范围更广,淋巴结受累更多[16]。此外,Trop2的激活状态也是BC患者的不良预后因素之一。Ambrogi等发现定位于细胞膜上的Trop-2是对患者总生存期不利的预后因素,而定位于细胞质内Trop-2对于患者的总生存期是有利的[17]。
1.3 Trop2在肺癌中的表达
Omori等使用IHC评估了接受抗癌治疗的肺癌患者中Trop2表达的变化,结果显示,在抗癌治疗前,89%的肺癌患者都表达Trop2,且在肺腺癌(Lung adenocarcinoma, LAC)和肺鳞状细胞癌(Squamous cell carcinoma, SqCC)中的表达明显高于肺神经内分泌癌(Neuroendocrine carcinoma, NEC),经抗癌治疗后,依然有87%的患者表达Trop2[18]。此外,Trop2的过表达与肺癌患者的低生存率相关。在一项研究中,Mito等发现在LAC患者中,Trop2表达的增加与不良的临床病程显著相关,然而高表达Trop2与SqCC的死亡率却无关,该研究还表明在LAC中发现Trop2表达与p53核积累/表达异常之间存在显著相关性,突变的p53介导的信号通路可能会影响LAC中Trop2的表达[19]。在另一项研究中,Inamura等得到了相似的结果,Trop2在不同的肺癌亚型中具有不同的作用,Trop2在64%的LAC、75%的SqCC和18%的高级别内分泌肿瘤(High-grade neuroendocrine tumor, HGNET)中高表达,Trop2表达与死亡率的关系依赖于肺癌亚型。Trop2高表达与LAC中较高的肺癌特异性死亡率和HGNET中较低的肺癌特异性死亡率相关,但是与SqCC无关[20]。这些结果支持了以Trop2为靶点的各种治疗方法用于治疗肺腺癌。
1.4 Trop2在结直肠癌中的表达
结直肠癌(Colorectal cancer, CRC)是最常见的恶性消化道肿瘤之一,2020年死亡人数超过90万。研究表明,Trop2在CRC中的表达显著高于正常组织,而且Trop2高表达组肝转移发生率和肿瘤相关死亡发生率高,肿瘤患者预后较差(P<0.05)[21]。在另一项研究中显示,Trop2高表达于转移性CRC,且低表达Trop-2肿瘤患者的PFS和OS比高/中表达Trop-2肿瘤患者更长,但是高/中等Trop-2表达的肿瘤患者化疗效果较好[22]。
1.5 Trop2在其他类型癌症中的表达
除了上述几种癌症,Mühlmann等研究表明Trop2在GC中显著高表达,特别是在肠型癌中,且Trop2过表达与较短的无病生存期(Disease free survival, DFS)显著相关[23]。Sun等发现Trop2在甲状腺癌中的表达显著高于对照组,其高表达与淋巴结转移、肿瘤大小和包膜浸润相关[24]。Mas等研究显示Trop2在胰腺导管癌高表达[25]。其他学者的研究也表明Trop2蛋白在食管癌[26]、卵巢癌[27]、口腔鳞状细胞癌[28]和宫颈癌[29]中高表达,且与肿瘤的侵袭、迁移和患者的不良预后显著相关。
2 Trop2调控癌症发生发展的机制
Trop2通过多种机制调控其在肿瘤中的表达。Lin等研究发现,由于Trop2上游启动子区CpG岛DNA杂合性缺失或高甲基化,导致Trop2失活,失去了其对胰岛素样生长因子1受体(Insulin-like growth factor-1 receptor, IGF-1R)信号转导和肿瘤生长的抑制作用,从而促进了LAC的发展[30]。在前列腺癌和BC中,Trop-2在细胞膜的表达与E-钙黏蛋白表达呈正相关,且Trop-2表达受到EMT转录因子锌指E盒结合同源盒1(Zinc finger E-box-binding homeobox 1, ZEB1)的抑制,这表明表观遗传学可能在调节Trop2表达方面发挥重要作用[31]。然而,在一项对他莫昔芬耐药BC的研究中,发现Trop-2表达水平与TACSTD2基因甲基化水平无关,这似乎表明Trop2信号网络可能比我们预期的要复杂得多。在转录水平上,DNA微阵列显示,Trop2表达显示依赖于高度互连的转录因子网络,这些转录因子包括TP63/TP53L、ERG、GRHL1/get1、HNF1A/TCF-1、SPI1/PU.1、WT1、GLIS2、AIRE、FOXM1、FOXP3[32]。在蛋白水平,Trop2的主要翻译后修饰是磷酸化和切割激活。在结肠癌细胞系中,蛋白激酶C在Ser-322位点磷酸化Trop-2,随后磷酸化的Trop-2可以与密蛋白7(Claudin-7, CLDN-7)结合,并通过调节细胞间黏附来改变细胞运动[33]。此外,Trop2能与解整合素和金属肽酶结构域10(A disintegrin and metallopeptidase domain 10, ADAM10)相互作用,然后在CRC细胞中切割细胞间黏附分子1(Cadherin 1, CDH1),CDH1的切割导致β-连环蛋白的激活,从而促进CRC细胞的抗凋亡信号转导,增加细胞迁移和存活[34] 。
此外,Trop-2可通过调节钙离子信号通路、细胞周期蛋白表达和降低纤黏蛋白黏附作用等促进肿瘤生长、增殖和转移。一项研究发现,在敲除Trop2细胞中过表达β-连环蛋白,在过表达Trop2细胞中低表达β-连环蛋白,发现β-连环蛋白过表达恢复了敲低Trop2细胞的迁移能力,β-连环蛋白敲低显著抵消Trop2在过表达Trop2细胞中的促迁移作用,此外,β-连环蛋白正调控N-钙黏蛋白、纤连蛋白1(Fibronectin 1, FN1)和Ⅰ型胶原α2链(Collagen Type Ⅰ Alpha 2 Chain, COL1A2)的表达,同时负调控上皮标志物E-cad,这些数据表明,Trop2通过与β-连环蛋白相互作用促进肿瘤细胞的EMT从而调控BC细胞的侵袭和转移[35]。在SqCC细胞系中,Trop2过表达上调MKI67、CD34、PECAM1和MMP13的表达,并通过磷酸化MAPK1/3下调裂解型Caspase 3的表达,从而导致SqCC的新生血管和血管生成增加[34]。另一方面,Sun等发现Trop2能通过结合IGF2R促进IGF2-IGF1R-AKT轴从而增强非小细胞肺癌(Non-small cell lung cancer, NSCLC)对吉非替尼的耐药,重塑NSCLC的TME[36]。在GC细胞中,桥粒芯糖蛋白2(Desmoglein-2, DSG2)被鉴定为与Trop2的相互作用的蛋白,Trop2通过激活EGFR/AKT和DSG2/PG/β-catenin通路降低DSG2表达,从而促进GC细胞的侵袭和迁移[37]。Tang等观察到,在稳定敲低Trop2的口腔鳞状细胞癌(Oral squamous cell carcinoma, OSCC)细胞系,磷酸酯酶与张力蛋白同源物(Phosphatase and tensin homolog, PTEN)表达增加,而过表达Trop2情况正好相反,Trop2能通过降低OSCC细胞系中PTEN的表达来激活PI3K/Akt信号通路,以促进OSCC的恶性进展[38]。此外,在骨肉瘤[39]、胆囊癌[40]和结直肠癌[41]中发现类似的机制,Trop2通过与其他蛋白相互作用激活PI3K/Akt信号通路,从而促进癌症的增殖、侵袭和转移。
综上所述,在不同类型的癌症中,Trop2信号网络可能是高度可变的,我们需要进一步的研究来确定Trop-2调控表达机制和Trop2信号转导如何影响肿瘤生长。
3 靶向Trop2的治疗
3.1 靶向Trop2的单克隆抗体
Trop2蛋白结构主要包含信号肽(Signal peptide, SP)、胞外结构域(Extracellular domain, ECD)、单个跨膜螺旋(Transmembrane helix, TMD)和胞内结构域(Intracellular domain, ICD),这些结构域共同工作调控癌症发生发展[42]。结构生物学的最新进展揭示Trop2具有独特的寡聚化特性,这在致癌信号通路中至关重要,而且与患者不良预后相关[43-44]。此外,Trop2-ECD是该分子的最大组成部分,由富含半胱氨酸结构域(Cysteine-rich domain, CRD)、甲状腺球蛋白1型结构域(Thyroglobulin type-1 domain, TY)和贫半胱氨酸结构域(Cysteine-poor domain, CPD)组成,大ECD使其成为Trop2靶向药物的理想治疗靶点,这些药物旨在阻断其致癌活性[42]。
RS7是早期研究的针对Trop2的mAb,虽然其本身表现出很强的内化活性,但是没有显著的治疗效果[45]。进一步研究发现,RS7能识别Trop2-CPD内一个线性多肽Q237-Q252[44]。暴露的环远离顺式和反式二聚化的界面,表明RS7无法破坏Trop2的寡聚化,因此,单独RS7在体内不能抑制Trop2阳性肿瘤的生长。与RS7类似,162-46.2、T16、77220、MM0588-49D6等mAb,其治疗效果有限,部分原因是它们的结合表位(D146-R178)远离Trop2二聚体结合的关键作用区域[46-47]。研究表明,针对Trop2的AR47A6.4.2 mAb在BC、结肠癌和前列腺癌表现出显著抑制肿瘤生长的作用[48]。表位定位实验证实,AR47A6.4.2能识别Trop2-CPD中的两个线性表位(L179-H187和Q252-Y260),可能通过阻断Trop2的二聚体形成来抑制肿瘤生长[44]。Pr1E11是早期报道的针对Trop2的mAb,其能靶向Trop2的CRD,这个区域对于Trop2的四聚体组装至关重要[49-50]。虽然Pr1E11在体外没有显示出抗肿瘤增殖作用,但它在体内比AR47A6.4.2更有效地抑制了肿瘤生长,部分原因是其具有强大的抗体依赖性细胞毒性(Antibody-dependent cellular cytotoxicity, ADCC)。然而,我们需要进一步的研究来确定Pr1E11与CRD结合是否影响肿瘤细胞表面Trop2的寡聚状态,这是Trop2介导的肿瘤进展的关键因素。
虽然一些mAb显示出良好的抗肿瘤效果,但是目前没有单独的mAb在进行临床试验,还停留在基础研究。可能原因为抗体结合表位和抗肿瘤机制的关系尚未得到很好的阐述。此外,Trop2的全长结构仍然未得到详尽的研究,目前所有可用的高分辨率Trop2结构模型都是基于解偶联结构域,导致缺乏完整受体激活和抗原-抗体相互作用动力学的全面视图。
3.2 靶向Trop2的ADC药物戈沙妥珠单抗
戈沙妥珠单抗(SG)是一种靶向Trop2的ADC药物,由Immunomedics公司开发,用于治疗各种实体肿瘤,其由人源化抗Trop2抗体(hRS7)与拓扑异构酶I抑制剂7-乙基-10-羟基喜树碱(SN-38)偶联形成,药物抗体比(Drug-to-antibody ratio, DAR)为7.6∶1[51]。临床前研究表明,SG对各种Trop2阳性肿瘤类型发挥显着和特异性的抗肿瘤作用。2020年4月,SG在美国获得批准用于治疗转移性TNBC患者。目前,有多临床试验已经完成或者已有初步研究结果,我们对这些临床试验进行了详细阐述,见表1。
表 1 靶向Trop2的ADC药物戈沙妥珠单抗在不同肿瘤中的临床疗效Table 1 Clinical efficacy of ADC drug sacituzumab govitecan targeting Trop2 in different tumorsTumor Drug Phase ORR Trial TNBC SG Ⅰ/Ⅱ ORR: 33.3% (n=108); mPFS: 5.5 m; mOS: 13.0 m NCT01631552 HR+/HER2-TNBC SG Ⅰ/Ⅱ ORR: 31.5% (n=54); mPFS: 5.5 m; mOS: 12 m NCT01631552 TNBC SG Ⅲ ORR: 35% (n=235); mPFS: 5.6 m; mOS: 12.1 m; NCT02574455 (2021) HR+/HER2- TNBC SG Ⅲ ORR: 21% (n=272); mPFS: 5.5 m; mOS: 14.4 m; NCT03901339 TNBC SG Ⅱ ORR: 64% (n=50); pCR: 30%; NCT04230109 UC SG Ⅰ ORR: 33% (n=25); mPFS: 6.7 m-8.2 m;
mOS: 7.5 m-11.4 mNCT01631552 UC SG Ⅱ ORR: 27% (n=113); mPFS: 5.4 m; mOS: 5.4 m NCT03547973 (Cohort 1) UC SG Ⅱ ORR: 32% (n=38); mPFS: 5.6 m; mOS: 13.5 m NCT03547973 (Cohort 2) UC SG + pembrolizumab Ⅱ ORR: 41% (n=17); mPFS: 5.3 m; mOS: 12.7 m NCT03547973 (Cohort 3) UC SG + ipilimumab +
nivolumabⅠ ORR: 41% (n=9); mPFS: 8.8 m NCT04863885 NSCLC SG Ⅰ ORR: 19% (n=47); mPFS: 5.2 m; mOS: 9.5 m NCT01631552 SCLC SG Ⅱ ORR: 14% (n=47); mPFS: 3.7 m; mOS: 7.5 m NCT01631552 CRC SG Ⅰ/Ⅱ ORR: 3.2% (n=31); mPFS: 3.9 m; mOS: 14.2 m NCT01631552 Notes: TNBC: triple negative breast cancer; UC: urothelial carcinoma; ORR: objective response rate; mPFS: median progression-free survival; mOS: median overall survival; pCR: pathologic complete response; SG: sacituzumab govitecan. 在临床试验NCT01631552中,纳入了108例晚期或者转移性TNBC患者,经过SG治疗后,患者的客观缓解率(Objective response rate, ORR)为33.3%,临床获益率为45.4%,中位缓解持续时间为7.7个月,中位无进展生存期(Progress free survival, PFS)为5.5个月,总生存期(Overall survival, OS)为13.0个月[52]。在临床试验NCT02574455中,该研究评估了SG与医生选择的单药化疗药(艾瑞布林、维诺瑞滨、卡培他滨或吉西他滨)在复发或难治性转移性TNBC患者中的疗效。结果显示,SG治疗组和化疗组中位PFS分别为5.6个月和1.7个月,SG治疗组和化疗组中位OS分别为12.1个月和6.7个月,ORR分别为35%和5%[53]。随后,进一步研究发现,无论Trop2表达水平如何,SG治疗组的中位PFS和中位OS显著高于化疗组[54]。在临床试验NCT03901339中,研究人员探索了SG在接受过内分泌、CDK4/6抑制剂以及经历过至少2线但不超过4线化疗的激素受体阳性HER2阴性晚期BC患者中的疗效,结果显示,与化疗组相比,经过SG治疗组患者的中位OS显著改善(中位OS 14.4个月vs. 11.2个月),ORR也显著提高(21% vs. 14%);此外,无论Trop2表达水平高低,均观察到SG组总生存获益优于化疗组,这些数据提示SG可以作为转移性HR+/HER2-BC治疗的选择[55]。在临床试验NCT04230109中,该研究评估了SG用于TNBC新辅助治疗的疗效与安全性[56]。结果显示,单独使用SG的病理完全缓解率(Pathologic complete response, pCR)为30%,ORR为64%;此外,较高的Ki-67(P=0.007)和肿瘤浸润淋巴细胞(Tumor infiltrating lymphocytes, TILs)(P=0.002)可预测pCR对SG的影响,而Trop2表达水平无统计学意义(P=0.440),并不能预测pCR。本研究证明了SG单药治疗局部TNBC的有效性,以及基于初始反应的疗效导向的治疗升级/降级的可行性。综上,与其他化疗方案相比,SG可显著TNBC患者的ORR、PFS和OS,且不论Trop2表达情况如何,TNBC患者都可以从SG治疗中获益。
除了乳腺癌,SG在对于治疗其他类型癌症中也有显著的治疗前景。在一项单臂多中心试验中,转移性NCLC患者在21天周期的第1天和第8天接受8或10 mg/kg SG。结果显示,在54名转移性NSCLC患者中,临床获益率(完全缓解+部分缓解+病情稳定≥4个月)为43%,意向治疗(Intention-to-treat, ITT)人群的ORR为17%,提示IMMU-132在大量预处理的转移性NCLC患者中具有良好的耐受性和诱导的持久反应[57]。在另一项临床研究中,评估了一种SG在转移性小细胞肺癌(Small cell lung cancer, SCLC)患者中的作用。结果显示,60%的患者CT上显示肿瘤缩小,在意向治疗基础上(N=50),ORR为14%,中位缓解持续时间为5.7个月,临床获益率为34%,中位PFS和OS分别为3.7个月和7.5个月,提示SG治疗对于转移性SCLC患者具有安全有效的治疗效果,包括那些对一线化疗敏感或耐药的患者[58]。在临床试验NCT04724018中,McGregor等[59]将SG和恩诺单抗(Enfortumab vedotin, EV)联合治疗转移性UC患者。结果显示,接受联合用药组患者ORR为70%,中位随访时间为14个月,23例患者中有9例持续缓解,其中6例缓解持续时间超过12个月,这些结果提示联合用药对mUC患者具有高缓解率,有望应用于临床。
3.3 靶向Trop2的其他治疗方法
鸦胆子苦素D(Bruceine D, BD)是一种天然化合物,其通过识别Trop2的ICD结构域内的关键位点K307和E310发挥作用,从而减少Trop2和转移相关基因的转录,限制BC肿瘤的生长和转移,并阻碍肺转移定植[35]。Liu等构建了一种用于乳腺癌术后治疗的一次性注射纳米凝胶疫苗(NIGel-Vax),该疫苗将Trop2蛋白抗原与PEI-4BImi-Man佐剂混合,然后包封在氧化葡聚糖(Oxidized dextran, ODEX)和4臂聚乙二醇羟胺(4-arm PEG-ONH2)制成的水凝胶中,结果显示该疫苗在TNBC模型中实现了96%的肿瘤抑制率和50%的治愈率,为BC术后管理提供了一种新方法[60]。除了小分子抑制剂和疫苗外,光免疫疗法也是一种新型的肿瘤特异性治疗方法。Jia等将Trop2抗体定向偶联到黑磷纳米片(black phosphorus nanosheets, BP),开发了一种光疗纳米片BPTrop2,该纳米片联合NIR照射下表现出较强的抗肿瘤活性,而且无全身毒性[61]。虽然靶向Trop2特异性小分子抑制剂、疫苗和光免疫疗法可以在小鼠模型中引发免疫原性并提高长期生存率,但是其疗效和安全性必须通过临床试验进行验证。
4 总结与展望
Trop2是一种跨膜糖蛋白,在多种实体瘤内表达升高且与癌症患者的不良预后显著相关,其能通过激活磷酸化、MAPK、细胞周期和EMT等信号通路促进肿瘤细胞的增殖、侵袭和转移,促进癌症的发生发展。因此,Trop2已经成为一种新的、有前途的分子靶点,可用于靶向治疗。目前,针对Trop2靶点开发了许多的ADC药物,其在多种临床试验中显示出不错的治疗效果,能够显著改善患者的生存预后。然而,ADC药物存在一定的局限性,我们需要进一步改进并设计一种精确的新型靶向药物载体,以减少ADC药物的靶向毒性和非靶向毒性;Trop2结构需要进行更加详尽的研究,揭示由不同表位结合诱导的不同治疗功能背后的复杂机制将有助于合理设计针对Trop2的靶向药物。此外,无论是低表达Trop2还是高表达Trop2的患者,都可以从靶向Trop2的ADC药物治疗中获益,因此我们未来应该开发一种标准化方法定量检测肿瘤样本中Trop2的表达,使更多患者从ADC药物治疗中获益。
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:张 颖:撰写初稿、文献检索和数据分析刘月平:文章整体思路设计和审阅 -
表 1 靶向Trop2的ADC药物戈沙妥珠单抗在不同肿瘤中的临床疗效
Table 1 Clinical efficacy of ADC drug sacituzumab govitecan targeting Trop2 in different tumors
Tumor Drug Phase ORR Trial TNBC SG Ⅰ/Ⅱ ORR: 33.3% (n=108); mPFS: 5.5 m; mOS: 13.0 m NCT01631552 HR+/HER2-TNBC SG Ⅰ/Ⅱ ORR: 31.5% (n=54); mPFS: 5.5 m; mOS: 12 m NCT01631552 TNBC SG Ⅲ ORR: 35% (n=235); mPFS: 5.6 m; mOS: 12.1 m; NCT02574455 (2021) HR+/HER2- TNBC SG Ⅲ ORR: 21% (n=272); mPFS: 5.5 m; mOS: 14.4 m; NCT03901339 TNBC SG Ⅱ ORR: 64% (n=50); pCR: 30%; NCT04230109 UC SG Ⅰ ORR: 33% (n=25); mPFS: 6.7 m-8.2 m;
mOS: 7.5 m-11.4 mNCT01631552 UC SG Ⅱ ORR: 27% (n=113); mPFS: 5.4 m; mOS: 5.4 m NCT03547973 (Cohort 1) UC SG Ⅱ ORR: 32% (n=38); mPFS: 5.6 m; mOS: 13.5 m NCT03547973 (Cohort 2) UC SG + pembrolizumab Ⅱ ORR: 41% (n=17); mPFS: 5.3 m; mOS: 12.7 m NCT03547973 (Cohort 3) UC SG + ipilimumab +
nivolumabⅠ ORR: 41% (n=9); mPFS: 8.8 m NCT04863885 NSCLC SG Ⅰ ORR: 19% (n=47); mPFS: 5.2 m; mOS: 9.5 m NCT01631552 SCLC SG Ⅱ ORR: 14% (n=47); mPFS: 3.7 m; mOS: 7.5 m NCT01631552 CRC SG Ⅰ/Ⅱ ORR: 3.2% (n=31); mPFS: 3.9 m; mOS: 14.2 m NCT01631552 Notes: TNBC: triple negative breast cancer; UC: urothelial carcinoma; ORR: objective response rate; mPFS: median progression-free survival; mOS: median overall survival; pCR: pathologic complete response; SG: sacituzumab govitecan. -
[1] Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2024, 74(3): 229-263. doi: 10.3322/caac.21834
[2] Will M, Liang J, Metcalfe C, et al. Therapeutic resistance to anti-oestrogen therapy in breast cancer[J]. Nat Rev Cancer, 2023, 23(10): 673-685. doi: 10.1038/s41568-023-00604-3
[3] Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance[J]. Nat Rev Cancer, 2022, 22(3): 157-173. doi: 10.1038/s41568-021-00427-0
[4] Fornaro M, Dell'Arciprete R, Stella M, et al. Cloning of the gene encoding Trop-2, a cell-surface glycoprotein expressed by human carcinomas[J]. Int J Cancer, 1995, 62(5): 610-618. doi: 10.1002/ijc.2910620520
[5] Cubas R, Zhang S, Li M, et al. Trop2 expression contributes to tumor pathogenesis by activating the ERK MAPK pathway[J]. Mol Cancer, 2010, 9: 253. doi: 10.1186/1476-4598-9-253
[6] Guan H, Guo Z, Liang W, et al. Trop2 enhances invasion of thyroid cancer by inducing MMP2 through ERK and JNK pathways[J]. BMC Cancer, 2017, 17(1): 486. doi: 10.1186/s12885-017-3475-2
[7] Fong D, Moser P, Krammel C, et al. High expression of TROP2 correlates with poor prognosis in pancreatic cancer[J]. Br J Cancer, 2008, 99(8): 1290-1295. doi: 10.1038/sj.bjc.6604677
[8] Liu X, Deng J, Yuan Y, et al. Advances in Trop2-targeted therapy: Novel agents and opportunities beyond breast cancer[J]. Pharmacol Ther, 2022, 239: 108296. doi: 10.1016/j.pharmthera.2022.108296
[9] Dumontet C, Reichert JM, Senter PD, et al. Antibody-drug conjugates come of age in oncology[J]. Nat Rev Drug Discov, 2023, 22(8): 641-661. doi: 10.1038/s41573-023-00709-2
[10] Tsuchikama K, Anami Y, Ha SYY, et al. Exploring the next generation of antibody-drug conjugates[J]. Nat Rev Clin Oncol, 2024, 21(3): 203-223. doi: 10.1038/s41571-023-00850-2
[11] Nelson BE, Meric-Bernstam F. Leveraging TROP2 Antibody-Drug Conjugates in Solid Tumors[J]. Annu Rev Med, 2024, 75: 31-48. doi: 10.1146/annurev-med-071322-065903
[12] Vidula N, Yau C, Rugo H. Trophoblast Cell Surface Antigen 2 gene (TACSTD2) expression in primary breast cancer[J]. Breast Cancer Res Treat, 2022, 194(3): 569-575. doi: 10.1007/s10549-022-06660-x
[13] Aslan M, Hsu EC, Garcia-Marques FJ, et al. Oncogene-mediated metabolic gene signature predicts breast cancer outcome[J]. NPJ Breast Cancer, 2021, 7(1): 141. doi: 10.1038/s41523-021-00341-6
[14] Mertens RB, Makhoul EP, Li X, et al. Comparative expression of trophoblast cell-surface antigen 2 (TROP2) in the different molecular subtypes of invasive breast carcinoma: An immunohistochemical study of 94 therapy-naive primary breast tumors[J]. Ann Diagn Pathol, 2024, 68: 152226. doi: 10.1016/j.anndiagpath.2023.152226
[15] Lin H, Huang JF, Qiu J R, et al. Significantly upregulated TACSTD2 and Cyclin D1 correlate with poor prognosis of invasive ductal breast cancer[J]. Exp Mol Pathol, 2013, 94(1): 73-78. doi: 10.1016/j.yexmp.2012.08.004
[16] Izci H, Punie K, Waumans L, et al. Correlation of TROP-2 expression with clinical-pathological characteristics and outcome in triple-negative breast cancer[J]. Sci Rep, 2022, 12(1): 22498. doi: 10.1038/s41598-022-27093-y
[17] Ambrogi F, Fornili M, Boracchi P, et al. Trop-2 is a determinant of breast cancer survival[J]. PLoS One, 2014, 9(5): e96993. doi: 10.1371/journal.pone.0096993
[18] Omori S, Muramatsu K, Kawata T, et al. Trophoblast cell-surface antigen 2 expression in lung cancer patients and the effects of anti-cancer treatments[J]. J Cancer Res Clin Oncol, 2022, 148(9): 2455-2463. doi: 10.1007/s00432-021-03784-3
[19] Mito R, Matsubara E, Komohara Y, et al. Clinical impact of TROP2 in non-small lung cancers and its correlation with abnormal p53 nuclear accumulation[J]. Pathol Int, 2020, 70(5): 287-294. doi: 10.1111/pin.12911
[20] Inamura K, Yokouchi Y, Kobayashi M, et al. Association of tumor TROP2 expression with prognosis varies among lung cancer subtypes[J]. Oncotarget, 2017, 8(17): 28725-28735. doi: 10.18632/oncotarget.15647
[21] Ohmachi T, Tanaka F, Mimori K, et al. Clinical significance of TROP2 expression in colorectal cancer[J]. Clin Cancer Res, 2006, 12(10): 3057-3063. doi: 10.1158/1078-0432.CCR-05-1961
[22] Moretto R, Germani MM, Giordano M, et al. Trop-2 and Nectin-4 immunohistochemical expression in metastatic colorectal cancer: searching for the right population for drugs' development[J]. Br J Cancer, 2023, 128(7): 1391-1399.
[23] Mühlmann G, Spizzo G, Gostner J, et al. TROP2 expression as prognostic marker for gastric carcinoma[J]. J Clin Pathol, 2009, 62(2): 152-158. doi: 10.1136/jcp.2008.060590
[24] Sun H, Chen Q, Liu W, et al. TROP2 modulates the progression in papillary thyroid carcinoma[J]. J Cancer, 2021, 12(22): 6883-6893. doi: 10.7150/jca.62461
[25] Mas L, Cros J, Svrcek M, et al. Trop-2 is a ubiquitous and promising target in pancreatic adenocarcinoma[J]. Clin Res Hepatol Gastroenterol, 2023, 47(4): 102108. doi: 10.1016/j.clinre.2023.102108
[26] Hoppe S, Meder L, Gebauer F, et al. Trophoblast Cell Surface Antigen 2 (TROP2) as a Predictive Bio-Marker for the Therapeutic Efficacy of Sacituzumab Govitecan in Adenocarcinoma of the Esophagus[J]. Cancers (Basel), 2022, 14(19): 4789. doi: 10.3390/cancers14194789
[27] Wu B, Yu C, Zhou B, et al. Overexpression of TROP2 promotes proliferation and invasion of ovarian cancer cells[J]. Exp Ther Med, 2017, 14(3): 1947-1952. doi: 10.3892/etm.2017.4788
[28] Erber R, Spoerl S, Mamilos A, et al. Impact of Spatially Heterogeneous Trop-2 Expression on Prognosis in Oral Squamous Cell Carcinoma[J]. Int J Mol Sci, 2021, 23(1): 87. doi: 10.3390/ijms23010087
[29] Liu T, Liu Y, Bao X, et al. Overexpression of TROP2 predicts poor prognosis of patients with cervical cancer and promotes the proliferation and invasion of cervical cancer cells by regulating ERK signaling pathway[J]. PLoS One, 2013, 8(9): e75864. doi: 10.1371/journal.pone.0075864
[30] Lin JC, Wu YY, Wu JY, et al. TROP2 is epigenetically inactivated and modulates IGF-1R signalling in lung adenocarcinoma[J]. EMBO Mol Med, 2012, 4(6): 472-485. doi: 10.1002/emmm.201200222
[31] Remšík J, Binó L, Kahounová Z, et al. Trop-2 plasticity is controlled by epithelial-to-mesenchymal transition[J]. Carcinogenesis, 2018, 39(11): 1411-1418. doi: 10.1093/carcin/bgy095
[32] Guerra E, Trerotola M, Aloisi AL, et al. The Trop-2 signalling network in cancer growth[J]. Oncogene, 2013, 32(12): 1594-1600. doi: 10.1038/onc.2012.151
[33] Mori Y, Akita K, Ojima K, et al. Trophoblast cell surface antigen 2 (Trop-2) phosphorylation by protein kinase C α/δ (PKCα/δ) enhances cell motility[J]. J Biol Chem, 2019, 294(30): 11513-11524. doi: 10.1074/jbc.RA119.008084
[34] Wang M, Guo Y, Wang M, et al. The Glial Cell-Derived Neurotrophic Factor (GDNF)-responsive Phosphoprotein Landscape Identifies Raptor Phosphorylation Required for Spermatogonial Progenitor Cell Proliferation[J]. Mol Cell Proteomics, 2017, 16(6): 982-997. doi: 10.1074/mcp.M116.065797
[35] Tang W, Hu Y, Tu K, et al. Targeting Trop2 by Bruceine D suppresses breast cancer metastasis by blocking Trop2/β-catenin positive feedback loop[J]. J Adv Res, 2024, 58: 193-210. doi: 10.1016/j.jare.2023.05.012
[36] Sun X, Jia L, Wang T, et al. Trop2 binding IGF2R induces gefitinib resistance in NSCLC by remodeling the tumor microenvironment[J]. J Cancer, 2021, 12(17): 5310-5319. doi: 10.7150/jca.57711
[37] Yang T, Jia L, Bian S, et al. TROP2 Down-regulated DSG2 to Promote Gastric Cancer Cell Invasion and Migration by EGFR/AKT and DSG2/PG/β-Catenin Pathways[J]. Curr Cancer Drug Targets, 2022, 22(8): 691-702. doi: 10.2174/1568009622666220407111013
[38] Tang G, Tang Q, Jia L, et al. TROP2 increases growth and metastasis of human oral squamous cell carcinoma through activation of the PI3K/Akt signaling pathway[J]. Int J Mol Med, 2019, 44(6): 2161-2170.
[39] Gu Q Z, Nijiati A, Gao X, et al. TROP2 promotes cell proliferation and migration in osteosarcoma through PI3K/AKT signaling[J]. Mol Med Rep, 2018, 18(2): 1782-1788.
[40] Li X, Teng S, Zhang Y, et al. TROP2 promotes proliferation, migration and metastasis of gallbladder cancer cells by regulating PI3K/AKT pathway and inducing EMT[J]. Oncotarget, 2017, 8(29): 47052-47063. doi: 10.18632/oncotarget.16789
[41] Wang Z, Jia L, Sun Y, et al. CORO1C is Associated With Poor Prognosis and Promotes Metastasis Through PI3K/AKT Pathway in Colorectal Cancer[J]. Front Mol Biosci, 2021, 8: 682594. doi: 10.3389/fmolb.2021.682594
[42] Liu X, Li J, Deng J, et al. Targeting Trop2 in solid tumors: a look into structures and novel epitopes[J]. Front Immunol, 2023, 14: 1332489. doi: 10.3389/fimmu.2023.1332489
[43] Guerra E, Relli V, Ceci M, et al. Trop-2, Na(+)/K(+) ATPase, CD9, PKCα, cofilin assemble a membrane signaling super-complex that drives colorectal cancer growth and invasion[J]. Oncogene, 2022, 41(12): 1795-1808. doi: 10.1038/s41388-022-02220-1
[44] Sun M, Zhang H, Jiang M, et al. Structural insights into the cis and trans assembly of human trophoblast cell surface antigen 2[J]. iScience, 2021, 24(10): 103190. doi: 10.1016/j.isci.2021.103190
[45] Shih LB, Xuan H, Aninipot R, et al. In vitro and in vivo reactivity of an internalizing antibody, RS7, with human breast cancer[J]. Cancer Res, 1995, 55(23 Suppl): 5857s-5863s.
[46] Alberti S, Miotti S, Stella M, et al. Biochemical characterization of Trop-2, a cell surface molecule expressed by human carcinomas: formal proof that the monoclonal antibodies T16 and MOv-16 recognize Trop-2[J]. Hybridoma, 1992, 11(5): 539-545. doi: 10.1089/hyb.1992.11.539
[47] Trerotola M, Guerra E, Ali Z, et al. Trop-2 cleavage by ADAM10 is an activator switch for cancer growth and metastasis[J]. Neoplasia, 2021, 23(4): 415-428. doi: 10.1016/j.neo.2021.03.006
[48] Truong A, Feng N, Sayegh D, et al. AR47A6.4. 2, a naked monoclonal antibody targeting Trop-2, exhibits anti-tumor efficacy in multiple human cancer models as a monotherapeutic agent and demonstrates efficacy in combination therapy[J]. Cancer Res, 2008, 68(9_Supplement): Abstract 3990.
[49] Ikeda M, Yamaguchi M, Kato K, et al. Pr1E11, a novel anti-TROP-2 antibody isolated by adenovirus-based antibody screening, recognizes a unique epitope[J]. Biochem Biophys Res Commun, 2015, 458(4): 877-882. doi: 10.1016/j.bbrc.2015.02.051
[50] Ikeda M, Kato K, Yamaguchi M, et al. Cell Surface Antibody Retention Influences In Vivo Antitumor Activity Mediated by Antibody-dependent Cellular Cytotoxicity[J]. Anticancer Res, 2016, 36(11): 5937-5944. doi: 10.21873/anticanres.11181
[51] Syed YY. Sacituzumab Govitecan: First Approval[J]. Drugs, 2020, 80(10): 1019-1025. doi: 10.1007/s40265-020-01337-5
[52] Bardia A, Mayer IA, Vahdat LT, et al. Sacituzumab Govitecan-hziy in Refractory Metastatic Triple-Negative Breast Cancer[J]. N Engl J Med, 2019, 380(8): 741-751. doi: 10.1056/NEJMoa1814213
[53] Bardia A, Hurvitz SA, Tolaney SM, et al. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer[J]. N Engl J Med, 2021, 384(16): 1529-1541. doi: 10.1056/NEJMoa2028485
[54] Bardia A, Rugo HS, Tolaney SM, et al. Final Results From the Randomized Phase Ⅲ ASCENT Clinical Trial in Metastatic Triple-Negative Breast Cancer and Association of Outcomes by Human Epidermal Growth Factor Receptor 2 and Trophoblast Cell Surface Antigen 2 Expression[J]. J Clin Oncol, 2024, 42(15): 1738-1744. doi: 10.1200/JCO.23.01409
[55] Rugo HS, Bardia A, Marmé F, et al. Overall survival with sacituzumab govitecan in hormone receptor-positive and human epidermal growth factor receptor 2-negative metastatic breast cancer (TROPiCS-02): a randomised, open-label, multicentre, phase 3 trial[J]. Lancet, 2023, 402(10411): 1423-1433. doi: 10.1016/S0140-6736(23)01245-X
[56] Spring LM, Tolaney SM, Fell G, et al. Response-guided neoadjuvant sacituzumab govitecan for localized triple-negative breast cancer: results from the NeoSTAR trial[J]. Ann Oncol, 2024, 35(3): 293-301. doi: 10.1016/j.annonc.2023.11.018
[57] Heist RS, Guarino MJ, Masters G, et al. Therapy of Advanced Non-Small-Cell Lung Cancer With an SN-38-Anti-Trop-2 Drug Conjugate, Sacituzumab Govitecan[J]. J Clin Oncol, 2017, 35(24): 2790-2797. doi: 10.1200/JCO.2016.72.1894
[58] Gray JE, Heist RS, Starodub AN, et al. Therapy of Small Cell Lung Cancer (SCLC) with a Topoisomerase-I-inhibiting Antibody-Drug Conjugate (ADC) Targeting Trop-2, Sacituzumab Govitecan[J]. Clin Cancer Res, 2017, 23(19): 5711-5719. doi: 10.1158/1078-0432.CCR-17-0933
[59] McGregor BA, Sonpavde GP, Kwak L, et al. The Double Antibody Drug Conjugate (DAD) phase Ⅰ trial: sacituzumab govitecan plus enfortumab vedotin for metastatic urothelial carcinoma[J]. Ann Oncol, 2024, 35(1): 91-97.
[60] Liu T, Si X, Liu L, et al. Injectable Nano-in-Gel Vaccine for Spatial and Temporal Control of Vaccine Kinetics and Breast Cancer Postsurgical Therapy[J]. ACS Nano, 2024, 18(4): 3087-3100. doi: 10.1021/acsnano.3c08376
[61] Jia L, Fu Y, Zhang N, et al. Directional conjugation of Trop2 antibody to black phosphorus nanosheets for phototherapy in orthotopic gastric carcinoma[J]. Nanomedicine, 2023, 51: 102687. doi: 10.1016/j.nano.2023.102687