高级搜索

乳酸对肿瘤微环境内免疫细胞的影响及相关靶点治疗的研究进展

金梦茹, 王莉, 李燕京

金梦茹, 王莉, 李燕京. 乳酸对肿瘤微环境内免疫细胞的影响及相关靶点治疗的研究进展[J]. 肿瘤防治研究, 2023, 50(6): 634-640. DOI: 10.3971/j.issn.1000-8578.2023.22.1076
引用本文: 金梦茹, 王莉, 李燕京. 乳酸对肿瘤微环境内免疫细胞的影响及相关靶点治疗的研究进展[J]. 肿瘤防治研究, 2023, 50(6): 634-640. DOI: 10.3971/j.issn.1000-8578.2023.22.1076
JIN Mengru, WANG Li, LI Yanjing. Effect of Lactate on Immune Cells in Tumor Microenvironment and Progress of Related Target Therapy[J]. Cancer Research on Prevention and Treatment, 2023, 50(6): 634-640. DOI: 10.3971/j.issn.1000-8578.2023.22.1076
Citation: JIN Mengru, WANG Li, LI Yanjing. Effect of Lactate on Immune Cells in Tumor Microenvironment and Progress of Related Target Therapy[J]. Cancer Research on Prevention and Treatment, 2023, 50(6): 634-640. DOI: 10.3971/j.issn.1000-8578.2023.22.1076

乳酸对肿瘤微环境内免疫细胞的影响及相关靶点治疗的研究进展

详细信息
    作者简介:

    金梦茹(1997-),女,硕士在读,住院医师,主要从事消化道肿瘤的研究,ORCID: 0009-0006-2269-8325

    通信作者:

    李燕京(1985-),男,博士,主任医师,主要从事消化道肿瘤的防治与研究,E-mail: liyanjing_hmu@hrbmu.edu.cn,ORCID: 0000-0003-0174-2017

  • 中图分类号: R730.5

Effect of Lactate on Immune Cells in Tumor Microenvironment and Progress of Related Target Therapy

More Information
  • 摘要:

    肿瘤代谢与肿瘤免疫关系复杂多样,同时肿瘤细胞代谢重编程塑造特异性的肿瘤微环境,其在肿瘤免疫治疗方面的作用尚未解释清楚。乳酸是糖酵解的主要产物,肿瘤细胞的有氧糖酵解使乳酸在微环境内堆积。近年来,大量研究表明,肿瘤微环境内堆积的乳酸对抗肿瘤免疫造成阻碍,尤其影响了免疫细胞的功能、分化和代谢以及参与肿瘤免疫逃逸等,发挥着促肿瘤作用。本文回顾了肿瘤微环境内乳酸堆积对树突状细胞、T细胞、NK细胞、肿瘤相关巨噬细胞及髓源性抑制细胞的影响。靶向干预肿瘤细胞产生及外排乳酸的过程有望成为肿瘤免疫治疗的新策略。

     

    Abstract:

    The relationship between tumor metabolism and immunity is complex and diverse. To date, the role of tumor-specific metabolic reprogramming in shaping the specific tumor microenvironment in tumor immunotherapy remains unclear. Lactic acid is the main product of glycolysis, and the aerobic glycolysis of tumor cells causes lactic acid to accumulate in the microenvironment. Recent studies have shown that the accumulation of lactic acid in the tumor microenvironment hinders anti-tumor immunity, especially affects the function, differentiation, and metabolism of immune cells, and participates in tumor immune escape, thus promoting tumor. This article reviews the effects of lactate accumulation in the tumor microenvironment on dendritic cells, T cells, NK cells, tumor-associated macrophages, and myeloid-derived suppressor cells. Targeted intervention of lactate production and efflux by tumor cells is expected to become a new strategy for tumor immunotherapy.

     

  • Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    金梦茹:文献总结,文章撰写
    王  莉:肿瘤免疫机制总结
    李燕京:文章总体把控及审校
  • [1]

    Qiu H, Cao S, Xu R. Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020[J]. Cancer Commun(Lond), 2021, 41(10): 1037-1048.

    [2]

    Shestov A, Liu X, Ser Z, et al. Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step[J]. Elife, 2014, 3: e03342. doi: 10.7554/eLife.03342

    [3]

    Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation[J]. Science, 2009, 324(5930): 1029-1033. doi: 10.1126/science.1160809

    [4]

    Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells?[J]. Trends Biochem Sci, 2016, 41(3): 211-218. doi: 10.1016/j.tibs.2015.12.001

    [5]

    Certo M, Tsai CH, Pucino V, et al. Lactate modulation of immune responses in inflammatory versus tumour microenvironments[J]. Nat Rev Immunol, 2021, 21(3): 151-161. doi: 10.1038/s41577-020-0406-2

    [6]

    Xie H, Hanai J, Ren JG, et al. Targeting Lactate Dehydrogenase-A Inhibits Tumorigenesis and Tumor Progression in Mouse Models of Lung Cancer and Impacts Tumor-Initiating Cells[J]. Cell Metab, 2014, 19(5): 795-809. doi: 10.1016/j.cmet.2014.03.003

    [7]

    Granchi C, Roy S, Giacomelli C, et al. Discovery of N -Hydroxyindole-Based Inhibitors of Human Lactate Dehydrogenase Isoform A (LDH-A) as Starvation Agents against Cancer Cells[J]. J Med Chem, 2011, 54(6): 1599-1612. doi: 10.1021/jm101007q

    [8]

    Manerba M, Vettraino M, Fiume L, et al. Galloflavin (CAS 568-80-9): A Novel Inhibitor of Lactate Dehydrogenase[J]. ChemMedChem, 2012, 7(2): 311-317. doi: 10.1002/cmdc.201100471

    [9]

    Felmlee MA, Jones RS, Rodriguez-Cruz V, et al. Monocarboxylate Transporters (SLC16): Function, Regulation, and Role in Health and Disease[J]. Pharmacol Rev, 2020, 72(2): 466-485. doi: 10.1124/pr.119.018762

    [10]

    Puri S, Juvale K. Monocarboxylate transporter 1 and 4 inhibitors as potential therapeutics for treating solid tumours: A review with structure-activity relationship insights[J]. Eur J Med Chem, 2020, 199: 112393. doi: 10.1016/j.ejmech.2020.112393

    [11]

    Chen DS, Mellman I. Oncology Meets Immunology: The Cancer-Immunity Cycle[J]. Immunity, 2013, 39(1): 1-10. doi: 10.1016/j.immuni.2013.07.012

    [12]

    Puig-Kröger A, Pello OM, Muñiz-Pello O. Peritoneal dialysis solutions inhibit the differentiation and maturation of human monocyte-derived dendritic cells: effect of lactate and glucose-degradation products[J/OL]. J Leukoc Biol, 2003, 73(4): 482-492.

    [13]

    Gottfried E, Kunz-Schughart LA, Andreesen R, et al. Brave Little World: Spheroids as an in vitro Model to Study Tumor-Immune-Cell Interactions[J]. Cell Cycle, 2006, 5(7): 691-695. doi: 10.4161/cc.5.7.2624

    [14]

    Gottfried E, Kunz-Schughart LA, Ebner S, et al. Tumor-derived lactic acid modulates dendritic cell activation and antigen expression[J]. Blood, 2006, 107(5): 2013-2021. doi: 10.1182/blood-2005-05-1795

    [15]

    Caronni N, Simoncello F, Stafetta F, et al. Downregulation of Membrane Trafficking Proteins and Lactate Conditioning Determine Loss of Dendritic Cell Function in Lung Cancer[J]. Cancer Res, 2018, 78(7): 1685-1699. doi: 10.1158/0008-5472.CAN-17-1307

    [16]

    Raychaudhuri D, Bhattacharya R, Sinha BP, et al. Lactate Induces Pro-tumor Reprogramming in Intratumoral Plasmacytoid Dendritic Cells[J]. Front Immunol, 2019, 10: 1878. doi: 10.3389/fimmu.2019.01878

    [17]

    Comito G, Iscaro A, Bacci M, et al. Lactate modulates CD4+ T-cell polarization and induces an immunosuppressive environment, which sustains prostate carcinoma progression via TLR8/miR21 axis[J]. Oncogene, 2019, 38(19): 3681-3695. doi: 10.1038/s41388-019-0688-7

    [18]

    Brand A, Singer K, Koehl GE, et al. LDHA-Associated Lactic Acid Production Blunts Tumor Immunosurveillance by T and NK Cells[J]. Cell Metab, 2016, 24(5): 657-671. doi: 10.1016/j.cmet.2016.08.011

    [19]

    Xie M, Fu XG, Jiang K. Notch1/TAZ axis promotes aerobic glycolysis and immune escape in lung cancer[J]. Cell Death Dis, 2021, 12(9): 832. doi: 10.1038/s41419-021-04124-6

    [20]

    Rostamian H, Khakpoor-Koosheh M, Jafarzadeh L, et al. Restricting tumor lactic acid metabolism using dichloroacetate improves T cell functions[J]. BMC Cancer, 2022, 22(1): 39. doi: 10.1186/s12885-021-09151-2

    [21]

    Renner K, Bruss C, Schnell A, et al. Restricting Glycolysis Preserves T Cell Effector Functions and Augments Checkpoint Therapy[J]. Cell Rep, 2019, 29(1): 135-150. e9. doi: 10.1016/j.celrep.2019.08.068

    [22]

    Daneshmandi S, Wegiel B, Seth P. Blockade of Lactate Dehydrogenase-A (LDH-A) Improves Efficacy of Anti-Programmed Cell Death-1 (PD-1) Therapy in Melanoma[J]. Cancers(Basel), 2019, 11(4): 450.

    [23]

    Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells[J]. Blood, 2007, 109(9): 3812-3819. doi: 10.1182/blood-2006-07-035972

    [24]

    Quinn WJ 3rd, Jiao J, Teslaa T, et al. Lactate Limits T Cell Proliferation via the NAD(H) Redox State[J]. Cell Rep, 2020, 33(11): 108500. doi: 10.1016/j.celrep.2020.108500

    [25]

    Garcia-Canaveras JC, Heo D, Trefely S, et al. CAR T-Cells Depend on the Coupling of NADH Oxidation with ATP Production[J]. Cells, 2021, 10(9): 2334. doi: 10.3390/cells10092334

    [26]

    Chirasani SR, Leukel P, Gottfried E, et al. Diclofenac inhibits lactate formation and efficiently counteracts local immune suppression in a murine glioma model[J]. Int J Cancer, 2013, 132(4): 843-853. doi: 10.1002/ijc.27712

    [27]

    Watson MJ, Vignali PDA, Mullett SJ, et al. Metabolic support of tumour-infiltrating regulatory T cells by lactic acid[J]. Nature, 2021, 591(7851): 645-651. doi: 10.1038/s41586-020-03045-2

    [28]

    Gu J, Zhou J, Chen Q, et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-b signaling in regulatory T cells[J]. Cell Rep, 2022, 39(12): 110986. doi: 10.1016/j.celrep.2022.110986

    [29]

    Kumagai S, Koyama S, Itahashi K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments[J]. Cancer Cell, 2022, 40(2): 201-218. e9. doi: 10.1016/j.ccell.2022.01.001

    [30]

    Xia H, Wang W, Crespo J, et al. Suppression of FIP200 and autophagy by tumor-derived lactate promotes naïve T cell apoptosis and affects tumor immunity[J]. Sci Immunol, 2017, 2(17): eaan4631. doi: 10.1126/sciimmunol.aan4631

    [31]

    Fu S, He K, Tian C, et al. Impaired lipid biosynthesis hinders antitumor efficacy of intratumoral iNKT cells[J]. Nat Commun, 2020, 11(1): 438. doi: 10.1038/s41467-020-14332-x

    [32]

    Pötzl J, Roser D, Bankel L, et al. Reversal of tumor acidosis by systemic buffering reactivates NK cells to express IFN-γ and induces NK cell-dependent lymphoma control without other immunotherapies[J]. Int J Cancer, 2017, 140(9): 2125-2133. doi: 10.1002/ijc.30646

    [33]

    Piñeiro Fernández J, Luddy KA, Harmon C, et al. Hepatic Tumor Microenvironments and Effects on NK Cell Phenotype and Function[J]. Int J Mol Sci, 2019, 20(17): 4131. doi: 10.3390/ijms20174131

    [34]

    Konjević G, Jurisić V, Banićevic B, et al. The difference in NK-cell activity between patients with non-Hodgkin's lymphomas and Hodgkin's disease [J]. Br J Haematol, 1999, 104(1): 144-151. doi: 10.1046/j.1365-2141.1999.01129.x

    [35]

    Husain Z, Huang Y, Seth P, et al. Tumor-Derived Lactate Modifies Antitumor Immune Response: Effect on Myeloid-Derived Suppressor Cells and NK Cells[J]. J Immunol, 2013, 191(3): 1486-1495. doi: 10.4049/jimmunol.1202702

    [36]

    Harmon C, Robinson MW, Hand F, et al. Lactate-Mediated Acidification of Tumor Microenvironment Induces Apoptosis of Liver-Resident NK Cells in Colorectal Liver Metastasis[J]. Cancer Immunol Res, 2019, 7(2): 335-346. doi: 10.1158/2326-6066.CIR-18-0481

    [37]

    Colegio OR, Chu NQ, Szabo AL, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid[J]. Nature, 2014, 513(7519): 559-563. doi: 10.1038/nature13490

    [38]

    Mu X, Shi W, Xu Y, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer[J]. Cell Cycle, 2018, 17(4): 428-438. doi: 10.1080/15384101.2018.1444305

    [39]

    Feng R, Morine Y, Ikemoto T, et al. Nrf2 activation drive macrophages polarization and cancer cell epithelial-mesenchymal transition during interaction[J]. Cell Commun Signal, 2018, 16(1): 54. doi: 10.1186/s12964-018-0262-x

    [40]

    Liu H, Liang Z, Zhou C, et al. Mutant KRAS triggers functional reprogramming of tumor-associated macrophages in colorectal cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 144. doi: 10.1038/s41392-021-00534-2

    [41]

    Ochioni AC, Imbroisi Filho R, Esteves AM, et al. Clotrimazole presents anticancer properties against a mouse melanoma model acting as a PI3K inhibitor and inducing repolarization of tumor-associated macrophages[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(12): 166263. doi: 10.1016/j.bbadis.2021.166263

    [42]

    El-Kenawi A, Gatenbee C, Robertson-Tessi M, et al. Acidity promotes tumour progression by altering macrophage phenotype in prostate cancer[J]. Br J Cancer, 2019, 121(7): 556-566. doi: 10.1038/s41416-019-0542-2

    [43]

    Ye H, Zhou Q, Zheng S, et al. Tumor-associated macrophages promote progression and the Warburg effect via CCL18/NF-kB/VCAM-1 pathway in pancreatic ductal adenocarcinoma[J]. Cell Death Dis, 2018, 9(5): 453. doi: 10.1038/s41419-018-0486-0

    [44]

    Wang X, Luo X, Chen C, et al. The Ap-2α/Elk-1 axis regulates Sirpα-dependent tumor phagocytosis by tumor-associated macrophages in colorectal cancer[J]. Signal Transduct Target Ther, 2020, 5(1): 35. doi: 10.1038/s41392-020-0124-z

    [45]

    Husain Z, Huang Y, Seth P, et al. Tumor-Derived Lactate Modifies Antitumor Immune Response: Effect on Myeloid-Derived Suppressor Cells and NK Cells[J]. J Immunol, 2013, 191(3): 1486-1495. doi: 10.4049/jimmunol.1202702

    [46]

    Zhao JL, Ye YC, Gao CC, et al. Notch-mediated lactate metabolism regulates MDSC development through the Hes1/MCT2/c-Jun axis[J]. Cell Rep, 2022, 38(10): 110451. doi: 10.1016/j.celrep.2022.110451

    [47]

    Yang X, Lu Y, Hang J, et al. Lactate-Modulated Immunosuppression of Myeloid-Derived Suppressor Cells Contributes to the Radioresistance of Pancreatic Cancer[J]. Cancer Immunol Res, 2020, 8(11): 1440-1451. doi: 10.1158/2326-6066.CIR-20-0111

    [48]

    Hua H, Kong Q, Zhang H, et al. Targeting mTOR for cancer therapy[J]. J Hematol Oncol, 2019, 12(1): 71. doi: 10.1186/s13045-019-0754-1

    [49]

    Li H, Li X, Liu S, et al. Programmed cell death-1 (PD-1) checkpoint blockade in combination with a mammalian target of rapamycin inhibitor restrains hepatocellular carcinoma growth induced by hepatoma cell-intrinsic PD-1[J]. Hepatology, 2017, 66(6): 1920-1933. doi: 10.1002/hep.29360

    [50]

    Vitali E, Boemi I, Tarantola G, et al. Metformin and Everolimus: A Promising Combination for Neuroendocrine Tumors Treatment[J]. Cancers(Basel), 2020, 12(8): 2143.

    [51]

    Xing BC, Wang C, Ji FJ, et al. Synergistically suppressive effects on colorectal cancer cells by combination of mTOR inhibitor and glycolysis inhibitor, Oxamate[J]. Int J Clin Exp Pathol, 2018, 11(9): 4439-4445.

    [52]

    Xu RH, Pelicano H, Zhang H, et al. Synergistic effect of targeting mTOR by rapamycin and depleting ATP by inhibition of glycolysis in lymphoma and leukemia cells[J]. Leukemia, 2005, 19(12): 2153-2158. doi: 10.1038/sj.leu.2403968

计量
  • 文章访问数:  4401
  • HTML全文浏览量:  686
  • PDF下载量:  4141
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 修回日期:  2022-12-14
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭