Progress of Research on Combination of Intratumoral Immune Injection and Radiotherapy for Tumor
-
摘要:
近年来,随着肿瘤免疫治疗的迅速发展,肿瘤治疗性疫苗技术日益受到关注。相较于个体化新抗原疫苗,原位疫苗技术无需经历个体化抗原检测、抗原肽定制合成等繁琐的步骤,即可在肿瘤局部形成“抗原库”以启动较强的抗肿瘤免疫,且能提高部分患者对于免疫检查点抑制剂的反应率,在现阶段具有较高的临床转化潜力。本文主要介绍原位疫苗最主要的两种实现方式:放射治疗和瘤内免疫注射,同时阐述它们作为原位疫苗的作用机制和二者联合应用的临床前及临床研究现状,使该领域得到更多研究者和临床医生的关注。
Abstract:With the rapid development of tumor immunotherapy in recent years, therapeutic cancer vaccines are attracting increased attention. Compared with personalized neoantigen vaccines, in situ vaccines could form an antigen reservoir in the tumor itself. Subsequently, antitumor immunity is initiated and the response to immune-checkpoint inhibitors of some patients improve without necessitating these patients to undergo the complicated procedures of detecting personalized antigen and customizing and synthesizing antigen peptide. At this stage, the potential of realizing the clinical translation of in situ vaccination is tremendous. In this review, we primarily introduce the mechanisms of radiotherapy and intratumoral immune injection as in situ vaccination and discuss the current status of preclinical study and clinical application of their combination to attract more attention from researchers and clinicians toward in situ vaccination.
-
Key words:
- Tumor /
- In situ vaccination /
- Intratumoral injection /
- Radiotherapy /
- Abscopal effects
-
Competing interests: The authors declare that they have no competing interests.利益冲突声明:所有作者均声明不存在利益冲突。作者贡献:戴娟娟:文献收集与分析,论文撰写刘宝瑞:文献分析李茹恬:论文构思,指导论文写作
-
[1] Lang F, Schrörs B, Löwer M, et al. Identification of neoantigens for individualized therapeutic cancer vaccines[J]. Nat Rev Drug Discov, 2022, 21(4): 261-282. doi: 10.1038/s41573-021-00387-y
[2] Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J]. Nat Rev Clin Oncol, 2021, 18(4): 215-229. doi: 10.1038/s41571-020-00460-2
[3] Hammerich L, Binder A, Brody JD. In situ vaccination: Cancer immunotherapy both personalized and off-the-shelf[J]. Mol Oncol, 2015, 9(10): 1966-1981. doi: 10.1016/j.molonc.2015.10.016
[4] Melero I, Castanon E, Alvarez M, et al. Intratumoural administration and tumour tissue targeting of cancer immunotherapies[J]. Nat Rev Clin Oncol, 2021, 18(9): 558-576. doi: 10.1038/s41571-021-00507-y
[5] Zhang Z, Liu X, Chen D, et al. Radiotherapy combined with immunotherapy: the dawn of cancer treatment[J]. Signal Transduct Target Ther, 2022, 7(1): 258. doi: 10.1038/s41392-022-01102-y
[6] Kiselyov A, Bunimovich-Mendrazitsky S, Startsev V. Treatment of non-muscle invasive bladder cancer with Bacillus Calmette-Guerin (BCG): Biological markers and simulation studies[J]. BBA Clin, 2015, 4: 27-34. doi: 10.1016/j.bbacli.2015.06.002
[7] Min Y, Roche KC, Tian S, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy[J]. Nat Nanotechnol, 2017, 12(9): 877-882. doi: 10.1038/nnano.2017.113
[8] Lussier DM, Alspach E, Ward JP, et al. Radiation-induced neoantigens broaden the immunotherapeutic window of cancers with low mutational loads[J]. Proc Natl Acad Sci U S A, 2021, 118(24): e2102611118. doi: 10.1073/pnas.2102611118
[9] Appleton E, Hassan J, Chan Wah Hak C, et al. Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune Checkpoint Blockade[J]. Front Immunol, 2021, 12: 754436. doi: 10.3389/fimmu.2021.754436
[10] Champiat S, Tselikas L, Farhane S, et al. Intratumoral Immunotherapy: From Trial Design to Clinical Practice[J]. Clinical Cancer Research, 2021, 27(3): 665-679. doi: 10.1158/1078-0432.CCR-20-0473
[11] Shevtsov M, Sato H, Multhoff G, et al. Novel Approaches to Improve the Efficacy of Immuno-Radiotherapy[J]. Front Oncol, 2019, 9: 156. doi: 10.3389/fonc.2019.00156
[12] Yu P, Rowley DA, Fu YX, et al. The role of stroma in immune recognition and destruction of well-established solid tumors[J]. Curr Opin Immunol, 2006, 18(2): 226-231. doi: 10.1016/j.coi.2006.01.004
[13] Rodríguez-Ruiz ME, Vanpouille-Box C, Melero I, et al. Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect[J]. Trends Immunol, 2018, 39(8): 644-655. doi: 10.1016/j.it.2018.06.001
[14] Demaria S, Coleman CN, Formenti SC. Radiotherapy: Changing the Game in Immunotherapy[J]. Trends Cancer, 2016, 2(6): 286-294. doi: 10.1016/j.trecan.2016.05.002
[15] Horton JK, Siamakpour-Reihani S, Lee CT, et al. FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target[J]. Radiat Res, 2015, 184(5): 456-469. doi: 10.1667/RR14089.1
[16] Arnold KM, Flynn NJ, Raben A, et al. The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules[J]. Cancer Growth Metastasis, 2018, 11: 1179064418761639.
[17] Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift[J]. J Natl Cancer Inst, 2013, 105(4): 256-265. doi: 10.1093/jnci/djs629
[18] Bernier J. Immuno-oncology: Allying forces of radio- and immuno-therapy to enhance cancer cell killing[J]. Crit Rev Oncol Hematol, 2016, 108: 97-108. doi: 10.1016/j.critrevonc.2016.11.001
[19] Newton JM, Hanoteau A, Liu HC, et al. Immune microenvironment modulation unmasks therapeutic benefit of radiotherapy and checkpoint inhibition[J]. J Immunother Cancer, 2019, 7(1): 216. doi: 10.1186/s40425-019-0698-6
[20] Jarosz-Biej M, Smolarczyk R, Cichon T, et al. Brachytherapy in a Single Dose of 10Gy as an "in situ" Vaccination[J]. Int J Mol Sci, 2020, 21(13): 4585. doi: 10.3390/ijms21134585
[21] Morris ZS, Guy EI, Francis DM, et al. In Situ Tumor Vaccination by Combining Local Radiation and Tumor-Specific Antibody or Immunocytokine Treatments[J]. Cancer Res, 2016, 76(13): 3929-3941. doi: 10.1158/0008-5472.CAN-15-2644
[22] Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity[J]. Nat Commun, 2017, 8: 15618. doi: 10.1038/ncomms15618
[23] Kolstad A, Kumari S, Walczak M, et al. Sequential intranodal immunotherapy induces antitumor immunity and correlated regression of disseminated follicular lymphoma[J]. Blood, 2015, 125(1): 82-89. doi: 10.1182/blood-2014-07-592162
[24] Bernstein MB, Krishnan S, Hodge JW, et al. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?[J]. Nat Rev Clin Oncol, 2016, 13(8): 516-524. doi: 10.1038/nrclinonc.2016.30
[25] Zhu S, Zhang T, Zheng L, et al. Combination strategies to maximize the benefits of cancer immunotherapy[J]. J Hematol Oncol, 2021, 14(1): 156. doi: 10.1186/s13045-021-01164-5
[26] Marabelle A, Tselikas L, de Baere T, et al. Intratumoral immunotherapy: using the tumor as the remedy[J]. Ann Oncol, 2017, 28 (suppl_12): xii33-xii43.
[27] Baniel CC, Sumiec EG, Hank JA, et al. Intratumoral injection reduces toxicity and antibody-mediated neutralization of immunocytokine in a mouse melanoma model[J]. J Immunother Cancer, 2020, 8(2): e001262. doi: 10.1136/jitc-2020-001262
[28] Li H, Yu J, Wu Y, et al. In situ antitumor vaccination: Targeting the tumor microenvironment[J]. J Cell Physiol, 2020, 235(7-8): 5490-5500. doi: 10.1002/jcp.29551
[29] Deplanque G, Shabafrouz K, Obeid M. Can local radiotherapy and IL-12 synergise to overcome the immunosuppressive tumor microenvironment and allow "in situ tumor vaccination"?[J]. Cancer Immunol Immunother, 2017, 66(7): 833-840. doi: 10.1007/s00262-017-2000-4
[30] Vanpouille-Box C, Diamond JM, Pilones KA, et al. TGFbeta Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity[J]. Cancer Res, 2015, 75(11): 2232-2242. doi: 10.1158/0008-5472.CAN-14-3511
[31] Cadena A, Cushman T, Anderson C, et al. Radiation and Anti-Cancer Vaccines: A Winning Combination[J]. Vaccines (Basel), 2018, 6(1): 9. doi: 10.3390/vaccines6010009
[32] Kim W, Seong J, Oh HJ, et al. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma[J]. J Radiat Res, 2011, 52(5): 646-654. doi: 10.1269/jrr.10185
[33] Wu CJ, Tsai YT, Lee IJ, et al. Combination of radiation and interleukin 12 eradicates large orthotopic hepatocellular carcinoma through immunomodulation of tumor microenvironment[J]. Oncoimmunology, 2018, 7(9): e1477459. doi: 10.1080/2162402X.2018.1477459
[34] Mills BN, Connolly KA, Ye J, et al. Stereotactic Body Radiation and Interleukin-12 Combination Therapy Eradicates Pancreatic Tumors by Repolarizing the Immune Microenvironment[J]. Cell Rep, 2019, 29(2): 406-421. e5. doi: 10.1016/j.celrep.2019.08.095
[35] Magee K, Marsh IR, Turek MM, et al. Safety and feasibility of an in situ vaccination and immunomodulatory targeted radionuclide combination immuno-radiotherapy approach in a comparative (companion dog) setting[J]. PLoS One, 2021, 16(8): e0255798. doi: 10.1371/journal.pone.0255798
[36] Byun JW, Lee HS, Song SU, et al. Combined treatment of murine fibrosarcoma with chemotherapy (Paclitaxel), radiotherapy, and intratumoral injection of dendritic cells[J]. Ann Dermatol, 2014, 26(1): 53-60. doi: 10.5021/ad.2014.26.1.53
[37] Niknam S, Barsoumian HB, Schoenhals JE, et al. Radiation Followed by OX40 Stimulation Drives Local and Abscopal Antitumor Effects in an Anti-PD1-Resistant Lung Tumor Model[J]. Clin Cancer Res, 2018, 24(22): 5735-5743. doi: 10.1158/1078-0432.CCR-17-3279
[38] Pieper AA, Zangl LM, Speigelman DV, et al. Radiation Augments the Local Anti-Tumor Effect of In Situ Vaccine With CpG-Oligodeoxynucleotides and Anti-OX40 in Immunologically Cold Tumor Models[J]. Front Immunol, 2021, 12: 763888. doi: 10.3389/fimmu.2021.763888
[39] Boss MK, Watts R, Harrison LG, et al. Immunologic Effects of Stereotactic Body Radiotherapy in Dogs with Spontaneous Tumors and the Impact of Intratumoral OX40/TLR Agonist Immunotherapy[J]. Int J Mol Sci, 2022, 23(2): 826. doi: 10.3390/ijms23020826
[40] Attaluri A, Kandala SK, Wabler M, et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer[J]. Int J Hyperthermia, 2015, 31(4): 359-374. doi: 10.3109/02656736.2015.1005178
[41] Chen M, Wang Z, Suo W, et al. Injectable Hydrogel for Synergetic Low Dose Radiotherapy, Chemodynamic Therapy and Photothermal Therapy[J]. Front Bioeng Biotechnol, 2021, 9: 757428. doi: 10.3389/fbioe.2021.757428
[42] Andón FT, Leon S, Ummarino A, et al. Innate and Adaptive Responses of Intratumoral Immunotherapy with Endosomal Toll-Like Receptor Agonists[J]. Biomedicines, 2022, 10(7): 1590. doi: 10.3390/biomedicines10071590
[43] Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy[J]. J Control Release, 2018, 292: 256-276. doi: 10.1016/j.jconrel.2018.10.008
[44] Zhang Y, Sriramaneni RN, Clark PA, et al. Multifunctional nanoparticle potentiates the in situ vaccination effect of radiation therapy and enhances response to immune checkpoint blockade[J]. Nat Commun, 2022, 13(1): 4948. doi: 10.1038/s41467-022-32645-x
[45] Kim YH, Gratzinger D, Harrison C, et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study[J]. Blood, 2012, 119(2): 355-363. doi: 10.1182/blood-2011-05-355222
[46] Brody JD, Ai WZ, Czerwinski DK, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase Ⅰ/Ⅱ study[J]. J Clin Oncol, 2010, 28(28): 4324-4332. doi: 10.1200/JCO.2010.28.9793
[47] Frank MJ, Reagan PM, Bartlett NL, et al. In Situ Vaccination with a TLR9 Agonist and Local Low-Dose Radiation Induces Systemic Responses in Untreated Indolent Lymphoma[J]. Cancer Discov, 2018, 8(10): 1258-1269. doi: 10.1158/2159-8290.CD-18-0743
[48] Finkelstein SE, Iclozan C, Bui MM, et al. Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients[J]. Int J Radiat Oncol Biol Phys, 2012, 82(2): 924-932. doi: 10.1016/j.ijrobp.2010.12.068
[49] Kolstad A, Olweus J. "In situ" vaccination for systemic effects in follicular lymphoma[J]. Oncoimmunology, 2015, 4(7): e1014773. doi: 10.1080/2162402X.2015.1014773
[50] Lin MJ, Svensson-Arvelund J, Lubitz GS, et al. Cancer vaccines: the next immunotherapy frontier[J]. Nat Cancer, 2022, 3(8): 911-926. doi: 10.1038/s43018-022-00418-6
[51] Hammerich L, Marron TU, Upadhyay R, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination[J]. Nat Med, 2019, 25(5): 814-824. doi: 10.1038/s41591-019-0410-x
[52] Laza-Briviesca R, Cruz-Bermudez A, Nadal E, et al. Blood biomarkers associated to complete pathological response on NSCLC patients treated with neoadjuvant chemoimmunotherapy included in NADIM clinical trial[J]. Clin Transl Med, 2021, 11(7): e491.
[53] Monga V, Miller BJ, Tanas M, et al. Intratumoral talimogene laherparepvec injection with concurrent preoperative radiation in patients with locally advanced soft-tissue sarcoma of the trunk and extremities: phaseⅠB/Ⅱ trial[J]. J Immunother Cancer, 2021, 9(7): e003119. doi: 10.1136/jitc-2021-003119
[54] Nimalasena S, Gothard L, Anbalagan S, et al. Intratumoral Hydrogen Peroxide With Radiation Therapy in Locally Advanced Breast Cancer: Results From a Phase 1 Clinical Trial[J]. Int J Radiat Oncol Biol Phys, 2020, 108(4): 1019-1029. doi: 10.1016/j.ijrobp.2020.06.022
计量
- 文章访问数: 3491
- HTML全文浏览量: 513
- PDF下载量: 1879