高级搜索

瘤内免疫注射联合放疗用于肿瘤治疗的研究进展

戴娟娟, 刘宝瑞, 李茹恬

戴娟娟, 刘宝瑞, 李茹恬. 瘤内免疫注射联合放疗用于肿瘤治疗的研究进展[J]. 肿瘤防治研究, 2023, 50(6): 549-555. DOI: 10.3971/j.issn.1000-8578.2023.22.1487
引用本文: 戴娟娟, 刘宝瑞, 李茹恬. 瘤内免疫注射联合放疗用于肿瘤治疗的研究进展[J]. 肿瘤防治研究, 2023, 50(6): 549-555. DOI: 10.3971/j.issn.1000-8578.2023.22.1487
DAI Juanjuan, LIU Baorui, LI Rutian. Progress of Research on Combination of Intratumoral Immune Injection and Radiotherapy for Tumor[J]. Cancer Research on Prevention and Treatment, 2023, 50(6): 549-555. DOI: 10.3971/j.issn.1000-8578.2023.22.1487
Citation: DAI Juanjuan, LIU Baorui, LI Rutian. Progress of Research on Combination of Intratumoral Immune Injection and Radiotherapy for Tumor[J]. Cancer Research on Prevention and Treatment, 2023, 50(6): 549-555. DOI: 10.3971/j.issn.1000-8578.2023.22.1487

瘤内免疫注射联合放疗用于肿瘤治疗的研究进展

详细信息
    作者简介:

    戴娟娟(1999-),女,硕士,主要从事肿瘤免疫治疗的临床研究,ORCID: 0009-0000-5043-5174

    刘宝瑞  教授、主任医师、博士生导师。南京大学医学院附属鼓楼医院副院长、肿瘤医学中心主任、南京大学临床肿瘤研究所所长、江苏省肿瘤治疗新技术医学中心主任。现任中国临床肿瘤学会胃癌专委会副主任委员、中国抗癌协会整合肿瘤专业委员会主任委员、中国抗癌协会肿瘤临床化疗专业委员会常务委员、江苏省医学会肿瘤化疗与生物治疗分会主任委员等。享受国务院特殊津贴专家,中国医师奖获得者,江苏省突出贡献专家。主要研究方向为疑难性肿瘤的个体化靶向免疫治疗,尤其在肿瘤治疗性疫苗(新抗原疫苗、癌睾抗原疫苗、原位疫苗)领域做了大量的工作,并自主发起了多项临床研究,部分成果已经实现临床转化。以第一作者或通信作者身份在J Nat Cancer InstJ Clin InvestJ Clin OncolNat CommunAdv Funct MaterBiomaterials等学术期刊发表SCI论文200余篇。主持科技部重大专项、国家自然科学基金9项,先后获江苏科学技术一等奖等36项科技奖励,主编Personalized Management of Gastric Cancer等专著5部

    李茹恬  教授、主任医师、博士生导师。南京大学医学院附属鼓楼医院肿瘤科副主任。现任中国医药教育协会肿瘤放射治疗专业委员会常务委员、江苏省老年医学会肿瘤学分会常务委员、中国抗癌协会肉瘤专业委员会基础与转化学组委员、中国抗癌协会骨肿瘤与骨转移瘤专业委员会药物及精准治疗学组委员、中国抗癌协会整合医学分会青年委员、江苏省抗癌协会肿瘤复发与转移专业委员会青年委员、江苏省抗癌协会胃肠道间质瘤专业委员会委员。主要研究方向为恶性肿瘤的纳米靶向及精准免疫治疗、骨与软组织肉瘤的免疫综合治疗新技术探索。发起或作为核心成员参与多项肿瘤原位疫苗相关临床研究。作为第一负责人承担国家自然科学基金项目5项及多项区域性基金,在Adv Funct MaterAdv SciBiomaterialsJ Hematol OncolClin Cancer ResAdv Mater、《中华肿瘤杂志》和《中华放射肿瘤学杂志》等学术期刊发表论文60余篇,参编专著5部,申请国家发明专利4项(授权2项)。作为负责人或主要参与人先后获得中华医学科技奖1项、高等教育优秀成果奖1项、江苏省科学技术奖2项、江苏省医学科技奖2项。入选江苏省333工程第二层次人才、江苏省“六大人才高峰”医药类人才

    通信作者:

    刘宝瑞(1963-),男,博士,主任医师,主要从事疑难性肿瘤的个体化靶向免疫治疗研究,E-mail: baoruiliu07@163.com,ORCID: 0000-0002-2539-7732

    李茹恬(1981-),女,博士,主任医师,主要从事恶性肿瘤的纳米靶向及精准免疫治疗研究,E-mail: rutianli@nju.edu.cn,ORCID: 0000-0003-4800-6156

  • 中图分类号: R730.5

Progress of Research on Combination of Intratumoral Immune Injection and Radiotherapy for Tumor

More Information
  • 摘要:

    近年来,随着肿瘤免疫治疗的迅速发展,肿瘤治疗性疫苗技术日益受到关注。相较于个体化新抗原疫苗,原位疫苗技术无需经历个体化抗原检测、抗原肽定制合成等繁琐的步骤,即可在肿瘤局部形成“抗原库”以启动较强的抗肿瘤免疫,且能提高部分患者对于免疫检查点抑制剂的反应率,在现阶段具有较高的临床转化潜力。本文主要介绍原位疫苗最主要的两种实现方式:放射治疗和瘤内免疫注射,同时阐述它们作为原位疫苗的作用机制和二者联合应用的临床前及临床研究现状,使该领域得到更多研究者和临床医生的关注。

     

    Abstract:

    With the rapid development of tumor immunotherapy in recent years, therapeutic cancer vaccines are attracting increased attention. Compared with personalized neoantigen vaccines, in situ vaccines could form an antigen reservoir in the tumor itself. Subsequently, antitumor immunity is initiated and the response to immune-checkpoint inhibitors of some patients improve without necessitating these patients to undergo the complicated procedures of detecting personalized antigen and customizing and synthesizing antigen peptide. At this stage, the potential of realizing the clinical translation of in situ vaccination is tremendous. In this review, we primarily introduce the mechanisms of radiotherapy and intratumoral immune injection as in situ vaccination and discuss the current status of preclinical study and clinical application of their combination to attract more attention from researchers and clinicians toward in situ vaccination.

     

  • Competing interests: The authors declare that they have no competing interests.
    利益冲突声明:
    所有作者均声明不存在利益冲突。
    作者贡献:
    戴娟娟:文献收集与分析,论文撰写
    刘宝瑞:文献分析
    李茹恬:论文构思,指导论文写作
  • [1]

    Lang F, Schrörs B, Löwer M, et al. Identification of neoantigens for individualized therapeutic cancer vaccines[J]. Nat Rev Drug Discov, 2022, 21(4): 261-282. doi: 10.1038/s41573-021-00387-y

    [2]

    Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines[J]. Nat Rev Clin Oncol, 2021, 18(4): 215-229. doi: 10.1038/s41571-020-00460-2

    [3]

    Hammerich L, Binder A, Brody JD. In situ vaccination: Cancer immunotherapy both personalized and off-the-shelf[J]. Mol Oncol, 2015, 9(10): 1966-1981. doi: 10.1016/j.molonc.2015.10.016

    [4]

    Melero I, Castanon E, Alvarez M, et al. Intratumoural administration and tumour tissue targeting of cancer immunotherapies[J]. Nat Rev Clin Oncol, 2021, 18(9): 558-576. doi: 10.1038/s41571-021-00507-y

    [5]

    Zhang Z, Liu X, Chen D, et al. Radiotherapy combined with immunotherapy: the dawn of cancer treatment[J]. Signal Transduct Target Ther, 2022, 7(1): 258. doi: 10.1038/s41392-022-01102-y

    [6]

    Kiselyov A, Bunimovich-Mendrazitsky S, Startsev V. Treatment of non-muscle invasive bladder cancer with Bacillus Calmette-Guerin (BCG): Biological markers and simulation studies[J]. BBA Clin, 2015, 4: 27-34. doi: 10.1016/j.bbacli.2015.06.002

    [7]

    Min Y, Roche KC, Tian S, et al. Antigen-capturing nanoparticles improve the abscopal effect and cancer immunotherapy[J]. Nat Nanotechnol, 2017, 12(9): 877-882. doi: 10.1038/nnano.2017.113

    [8]

    Lussier DM, Alspach E, Ward JP, et al. Radiation-induced neoantigens broaden the immunotherapeutic window of cancers with low mutational loads[J]. Proc Natl Acad Sci U S A, 2021, 118(24): e2102611118. doi: 10.1073/pnas.2102611118

    [9]

    Appleton E, Hassan J, Chan Wah Hak C, et al. Kickstarting Immunity in Cold Tumours: Localised Tumour Therapy Combinations With Immune Checkpoint Blockade[J]. Front Immunol, 2021, 12: 754436. doi: 10.3389/fimmu.2021.754436

    [10]

    Champiat S, Tselikas L, Farhane S, et al. Intratumoral Immunotherapy: From Trial Design to Clinical Practice[J]. Clinical Cancer Research, 2021, 27(3): 665-679. doi: 10.1158/1078-0432.CCR-20-0473

    [11]

    Shevtsov M, Sato H, Multhoff G, et al. Novel Approaches to Improve the Efficacy of Immuno-Radiotherapy[J]. Front Oncol, 2019, 9: 156. doi: 10.3389/fonc.2019.00156

    [12]

    Yu P, Rowley DA, Fu YX, et al. The role of stroma in immune recognition and destruction of well-established solid tumors[J]. Curr Opin Immunol, 2006, 18(2): 226-231. doi: 10.1016/j.coi.2006.01.004

    [13]

    Rodríguez-Ruiz ME, Vanpouille-Box C, Melero I, et al. Immunological Mechanisms Responsible for Radiation-Induced Abscopal Effect[J]. Trends Immunol, 2018, 39(8): 644-655. doi: 10.1016/j.it.2018.06.001

    [14]

    Demaria S, Coleman CN, Formenti SC. Radiotherapy: Changing the Game in Immunotherapy[J]. Trends Cancer, 2016, 2(6): 286-294. doi: 10.1016/j.trecan.2016.05.002

    [15]

    Horton JK, Siamakpour-Reihani S, Lee CT, et al. FAS Death Receptor: A Breast Cancer Subtype-Specific Radiation Response Biomarker and Potential Therapeutic Target[J]. Radiat Res, 2015, 184(5): 456-469. doi: 10.1667/RR14089.1

    [16]

    Arnold KM, Flynn NJ, Raben A, et al. The Impact of Radiation on the Tumor Microenvironment: Effect of Dose and Fractionation Schedules[J]. Cancer Growth Metastasis, 2018, 11: 1179064418761639.

    [17]

    Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift[J]. J Natl Cancer Inst, 2013, 105(4): 256-265. doi: 10.1093/jnci/djs629

    [18]

    Bernier J. Immuno-oncology: Allying forces of radio- and immuno-therapy to enhance cancer cell killing[J]. Crit Rev Oncol Hematol, 2016, 108: 97-108. doi: 10.1016/j.critrevonc.2016.11.001

    [19]

    Newton JM, Hanoteau A, Liu HC, et al. Immune microenvironment modulation unmasks therapeutic benefit of radiotherapy and checkpoint inhibition[J]. J Immunother Cancer, 2019, 7(1): 216. doi: 10.1186/s40425-019-0698-6

    [20]

    Jarosz-Biej M, Smolarczyk R, Cichon T, et al. Brachytherapy in a Single Dose of 10Gy as an "in situ" Vaccination[J]. Int J Mol Sci, 2020, 21(13): 4585. doi: 10.3390/ijms21134585

    [21]

    Morris ZS, Guy EI, Francis DM, et al. In Situ Tumor Vaccination by Combining Local Radiation and Tumor-Specific Antibody or Immunocytokine Treatments[J]. Cancer Res, 2016, 76(13): 3929-3941. doi: 10.1158/0008-5472.CAN-15-2644

    [22]

    Vanpouille-Box C, Alard A, Aryankalayil MJ, et al. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity[J]. Nat Commun, 2017, 8: 15618. doi: 10.1038/ncomms15618

    [23]

    Kolstad A, Kumari S, Walczak M, et al. Sequential intranodal immunotherapy induces antitumor immunity and correlated regression of disseminated follicular lymphoma[J]. Blood, 2015, 125(1): 82-89. doi: 10.1182/blood-2014-07-592162

    [24]

    Bernstein MB, Krishnan S, Hodge JW, et al. Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?[J]. Nat Rev Clin Oncol, 2016, 13(8): 516-524. doi: 10.1038/nrclinonc.2016.30

    [25]

    Zhu S, Zhang T, Zheng L, et al. Combination strategies to maximize the benefits of cancer immunotherapy[J]. J Hematol Oncol, 2021, 14(1): 156. doi: 10.1186/s13045-021-01164-5

    [26]

    Marabelle A, Tselikas L, de Baere T, et al. Intratumoral immunotherapy: using the tumor as the remedy[J]. Ann Oncol, 2017, 28 (suppl_12): xii33-xii43.

    [27]

    Baniel CC, Sumiec EG, Hank JA, et al. Intratumoral injection reduces toxicity and antibody-mediated neutralization of immunocytokine in a mouse melanoma model[J]. J Immunother Cancer, 2020, 8(2): e001262. doi: 10.1136/jitc-2020-001262

    [28]

    Li H, Yu J, Wu Y, et al. In situ antitumor vaccination: Targeting the tumor microenvironment[J]. J Cell Physiol, 2020, 235(7-8): 5490-5500. doi: 10.1002/jcp.29551

    [29]

    Deplanque G, Shabafrouz K, Obeid M. Can local radiotherapy and IL-12 synergise to overcome the immunosuppressive tumor microenvironment and allow "in situ tumor vaccination"?[J]. Cancer Immunol Immunother, 2017, 66(7): 833-840. doi: 10.1007/s00262-017-2000-4

    [30]

    Vanpouille-Box C, Diamond JM, Pilones KA, et al. TGFbeta Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity[J]. Cancer Res, 2015, 75(11): 2232-2242. doi: 10.1158/0008-5472.CAN-14-3511

    [31]

    Cadena A, Cushman T, Anderson C, et al. Radiation and Anti-Cancer Vaccines: A Winning Combination[J]. Vaccines (Basel), 2018, 6(1): 9. doi: 10.3390/vaccines6010009

    [32]

    Kim W, Seong J, Oh HJ, et al. A novel combination treatment of armed oncolytic adenovirus expressing IL-12 and GM-CSF with radiotherapy in murine hepatocarcinoma[J]. J Radiat Res, 2011, 52(5): 646-654. doi: 10.1269/jrr.10185

    [33]

    Wu CJ, Tsai YT, Lee IJ, et al. Combination of radiation and interleukin 12 eradicates large orthotopic hepatocellular carcinoma through immunomodulation of tumor microenvironment[J]. Oncoimmunology, 2018, 7(9): e1477459. doi: 10.1080/2162402X.2018.1477459

    [34]

    Mills BN, Connolly KA, Ye J, et al. Stereotactic Body Radiation and Interleukin-12 Combination Therapy Eradicates Pancreatic Tumors by Repolarizing the Immune Microenvironment[J]. Cell Rep, 2019, 29(2): 406-421. e5. doi: 10.1016/j.celrep.2019.08.095

    [35]

    Magee K, Marsh IR, Turek MM, et al. Safety and feasibility of an in situ vaccination and immunomodulatory targeted radionuclide combination immuno-radiotherapy approach in a comparative (companion dog) setting[J]. PLoS One, 2021, 16(8): e0255798. doi: 10.1371/journal.pone.0255798

    [36]

    Byun JW, Lee HS, Song SU, et al. Combined treatment of murine fibrosarcoma with chemotherapy (Paclitaxel), radiotherapy, and intratumoral injection of dendritic cells[J]. Ann Dermatol, 2014, 26(1): 53-60. doi: 10.5021/ad.2014.26.1.53

    [37]

    Niknam S, Barsoumian HB, Schoenhals JE, et al. Radiation Followed by OX40 Stimulation Drives Local and Abscopal Antitumor Effects in an Anti-PD1-Resistant Lung Tumor Model[J]. Clin Cancer Res, 2018, 24(22): 5735-5743. doi: 10.1158/1078-0432.CCR-17-3279

    [38]

    Pieper AA, Zangl LM, Speigelman DV, et al. Radiation Augments the Local Anti-Tumor Effect of In Situ Vaccine With CpG-Oligodeoxynucleotides and Anti-OX40 in Immunologically Cold Tumor Models[J]. Front Immunol, 2021, 12: 763888. doi: 10.3389/fimmu.2021.763888

    [39]

    Boss MK, Watts R, Harrison LG, et al. Immunologic Effects of Stereotactic Body Radiotherapy in Dogs with Spontaneous Tumors and the Impact of Intratumoral OX40/TLR Agonist Immunotherapy[J]. Int J Mol Sci, 2022, 23(2): 826. doi: 10.3390/ijms23020826

    [40]

    Attaluri A, Kandala SK, Wabler M, et al. Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer[J]. Int J Hyperthermia, 2015, 31(4): 359-374. doi: 10.3109/02656736.2015.1005178

    [41]

    Chen M, Wang Z, Suo W, et al. Injectable Hydrogel for Synergetic Low Dose Radiotherapy, Chemodynamic Therapy and Photothermal Therapy[J]. Front Bioeng Biotechnol, 2021, 9: 757428. doi: 10.3389/fbioe.2021.757428

    [42]

    Andón FT, Leon S, Ummarino A, et al. Innate and Adaptive Responses of Intratumoral Immunotherapy with Endosomal Toll-Like Receptor Agonists[J]. Biomedicines, 2022, 10(7): 1590. doi: 10.3390/biomedicines10071590

    [43]

    Zhang R, Billingsley MM, Mitchell MJ. Biomaterials for vaccine-based cancer immunotherapy[J]. J Control Release, 2018, 292: 256-276. doi: 10.1016/j.jconrel.2018.10.008

    [44]

    Zhang Y, Sriramaneni RN, Clark PA, et al. Multifunctional nanoparticle potentiates the in situ vaccination effect of radiation therapy and enhances response to immune checkpoint blockade[J]. Nat Commun, 2022, 13(1): 4948. doi: 10.1038/s41467-022-32645-x

    [45]

    Kim YH, Gratzinger D, Harrison C, et al. In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study[J]. Blood, 2012, 119(2): 355-363. doi: 10.1182/blood-2011-05-355222

    [46]

    Brody JD, Ai WZ, Czerwinski DK, et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase Ⅰ/Ⅱ study[J]. J Clin Oncol, 2010, 28(28): 4324-4332. doi: 10.1200/JCO.2010.28.9793

    [47]

    Frank MJ, Reagan PM, Bartlett NL, et al. In Situ Vaccination with a TLR9 Agonist and Local Low-Dose Radiation Induces Systemic Responses in Untreated Indolent Lymphoma[J]. Cancer Discov, 2018, 8(10): 1258-1269. doi: 10.1158/2159-8290.CD-18-0743

    [48]

    Finkelstein SE, Iclozan C, Bui MM, et al. Combination of external beam radiotherapy (EBRT) with intratumoral injection of dendritic cells as neo-adjuvant treatment of high-risk soft tissue sarcoma patients[J]. Int J Radiat Oncol Biol Phys, 2012, 82(2): 924-932. doi: 10.1016/j.ijrobp.2010.12.068

    [49]

    Kolstad A, Olweus J. "In situ" vaccination for systemic effects in follicular lymphoma[J]. Oncoimmunology, 2015, 4(7): e1014773. doi: 10.1080/2162402X.2015.1014773

    [50]

    Lin MJ, Svensson-Arvelund J, Lubitz GS, et al. Cancer vaccines: the next immunotherapy frontier[J]. Nat Cancer, 2022, 3(8): 911-926. doi: 10.1038/s43018-022-00418-6

    [51]

    Hammerich L, Marron TU, Upadhyay R, et al. Systemic clinical tumor regressions and potentiation of PD1 blockade with in situ vaccination[J]. Nat Med, 2019, 25(5): 814-824. doi: 10.1038/s41591-019-0410-x

    [52]

    Laza-Briviesca R, Cruz-Bermudez A, Nadal E, et al. Blood biomarkers associated to complete pathological response on NSCLC patients treated with neoadjuvant chemoimmunotherapy included in NADIM clinical trial[J]. Clin Transl Med, 2021, 11(7): e491.

    [53]

    Monga V, Miller BJ, Tanas M, et al. Intratumoral talimogene laherparepvec injection with concurrent preoperative radiation in patients with locally advanced soft-tissue sarcoma of the trunk and extremities: phaseⅠB/Ⅱ trial[J]. J Immunother Cancer, 2021, 9(7): e003119. doi: 10.1136/jitc-2021-003119

    [54]

    Nimalasena S, Gothard L, Anbalagan S, et al. Intratumoral Hydrogen Peroxide With Radiation Therapy in Locally Advanced Breast Cancer: Results From a Phase 1 Clinical Trial[J]. Int J Radiat Oncol Biol Phys, 2020, 108(4): 1019-1029. doi: 10.1016/j.ijrobp.2020.06.022

计量
  • 文章访问数:  3491
  • HTML全文浏览量:  513
  • PDF下载量:  1879
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-14
  • 修回日期:  2023-02-06
  • 网络出版日期:  2024-01-12
  • 刊出日期:  2023-06-24

目录

    /

    返回文章
    返回
    x 关闭 永久关闭