Progress of Biomarkers to Predict Response to Immune Checkpoint Inhibitors in Microsatellite Stability Colorectal Cancer
-
摘要:
寻找微卫星稳定型结直肠癌免疫检查点抑制剂疗效预测标志物能够使更多的患者从免疫治疗中获益。肿瘤突变负荷(TMB)、POLE/POLD1突变、CMS分型、MGMT甲基化等多个指标具有对微卫星稳定型结直肠癌免疫检查点抑制剂疗效进行预测的潜能和价值。本文通过对微卫星稳定型结直肠癌免疫检查点抑制剂疗效预测标志物的相关研究进行综述,以期为寻找微卫星稳定型结直肠癌患者的最佳治疗策略提供参考。
Abstract:The exploration of biomarkers predicting response to immune checkpoint inhibitors in microsatellite stability colorectal cancer can enable more patients to benefit from immunotherapy. Tumor mutational burden (TMB), POLE/POLD1 mutation, CMS classifications, MGMT methylation, and other indicators own the potential and value of predicting response to immune checkpoint inhibitors in microsatellite stability colorectal cancer. In this paper, we reviewed the related research on predictive biomarkers of immune checkpoint inhibitors in microsatellite stability colorectal cancer, provide a reference for the best treatment strategy for microsatellite stability colorectal cancer.
-
0 引言
食管癌是消化系统最具侵袭性的恶性肿瘤之一,分别居全世界范围癌症发病率与死亡率第10位和第6位,而中国的食管癌疾病负担较重,其每年新发和死亡病例数均占全世界的半数以上[1-2]。食管癌治疗疗效和预后均较差,非常重要的一个原因是起病隐匿,疾病早期往往无特异性症状,确诊时多数患者已进入局部区域进展阶段或远处转移阶段,治疗效果不佳。因此晚期食管癌的治疗策略优化及疗效提高是亟待解决的问题。本文就晚期食管癌的治疗现状及放疗在系统治疗支持下的应用前景予以综述。
1 化疗联合免疫检查点抑制剂治疗已成为晚期食管癌一线推荐方案
对于晚期食管癌,强调以系统性治疗为主的综合治疗。在免疫治疗前时代,以氟尿嘧啶联合顺铂或紫杉醇联合铂类为代表的两药联合方案是晚期食管癌的标准一线治疗方案,一旦疾病进展,可选择的二线治疗药物并不多(伊立替康、多西他赛等),并且二线化疗的有效率往往不足10%[3-4]。即便在一线治疗数据中,以铂类为基础的标准化疗方案的中位总生存期亦不足一年[5-6]。关于化疗方案的探索,一项日本的研究[7]显示多西他赛、氟尿嘧啶联合顺铂(DCF)的三药方案可以为患者带来更好的疗效(有效率62%,中位总生存期11.1个月,中位无进展生存期5.8个月),但因其较重的不良反应,临床并未推广。除标准化疗外,目前在晚期食管癌中纳入指南推荐的药物还包括曲妥珠单抗、雷莫芦单抗、安罗替尼、阿帕替尼等,其中除曲妥珠单抗在HER2阳性的食管/食管胃结合部腺癌中被推荐与FP方案联合用作一线治疗外,其他药物因给患者带来的获益有限而仅作二线及以上治疗推荐。总体来讲,晚期食管癌的疗效数据不佳,可选药物有限,是困扰临床治疗的医学难题。
近年来,免疫检查点抑制剂(ICIs)为食管癌的治疗带来新的契机。首先在后线治疗领域,基于KEYNOTE-181(Ⅲ期)[3]、ESCORT(Ⅲ期)[4]及ATTRACTION-3(Ⅲ期)[8]等研究的结果,PD-1抑制剂单药治疗被指南纳入晚期食管癌二线治疗Ⅰ级推荐(1A)。继之,随KEYNOTE-590[9]、CHECKMATE-649[10]等重磅研究结果公布,NCCN及CSCO食管癌诊疗指南迅速被改写,化疗联合免疫治疗已成为晚期食管癌的标准一线治疗方案。其中在全球多中心Ⅲ期随机试验KEYNOTE-590研究中,共有749例食管及食管胃结合部癌患者入组,鳞癌占70%以上,转移性食管癌占比超过90%,帕博利珠单抗联合化疗对比单纯化疗组显著提高总生存期(mOS:12.4个月 vs. 9.8个月;P<
0.0001 ;HR=0.73;95%CI:0.62~0.86),其中PD-L1 CPS≥10的食管鳞癌中获益幅度相对较大(13.9个月 vs. 8.8个月;P<0.0001 ;HR=0.57;95%CI:0.43~0.75)。在CHECKMATE-649研究中,纳武利尤单抗联合化疗对比单纯化疗也显著延长了PD-L1 CPS≥5患者的OS和PFS,达到了研究的两项主要终点。另纳武利尤单抗联合化疗在所有随机人群中也显示出具有显著统计学意义的OS获益。国家药品监督管理局因此批准纳武利尤单抗联合含氟尿嘧啶和铂类药物的方案用于一线治疗晚期胃癌、胃食管交界部癌或食管腺癌。随ESCORT-1st[11]、JUPITER-06[12]、ORIENT-16[13]、ASTRUM-007[14]、RATIONALE 306[15]研究结果的公布,国产PD-1抑制剂卡瑞利珠单抗、特瑞普利单抗、信迪利单抗、斯鲁利单抗、替雷利珠单抗亦显示出其与化疗联合在晚期食管癌中的获益而被CSCO指南纳入Ⅰ级推荐。但即便应用化疗联合免疫治疗,患者生存数据的改善仍然非常有限,总体来讲,相较于单纯化疗,化免联合治疗为患者带来的中位PFS改善时间仅增加1~2个月,中位OS的改善仅增加3个月左右,目前化免联合治疗所能达到的mOS约为12.4~17.2个月,仍不能达到临床满意,存在免疫长拖尾效应的患者数量有限,多数患者仍然会出现短期内进展。对于这一瓶颈问题,临床亟需:(1)寻求与免疫治疗疗效相关的临床病理因素及生物标志物,建立生物预测模型,对疗效进行预判断,筛选优势人群,避免无效治疗及不必要损伤,提高诊疗效能,节约医疗成本;(2)寻求更优的联合治疗策略,如在现有标准治疗基础上,对于选择性患者联合局部治疗(手术或放疗)以求获得更高的PFS及OS。例如,在局部晚期可切除食管癌优选新辅助治疗模式的探索中,我们可以看到,在原有标准放化疗基础上联合PD-1抑制剂新辅助治疗,可以为患者带来更高的pCR率,在PALACE-1研究[16]中新辅助放化免联合治疗的pCR率为56%,是迄今所有新辅助治疗模式研究中pCR数据报道最高的一项,这一良好疗效也在后续开展的SCALE-1[17]及NEOCRTEC1901[18]研究中得以验证,两项研究所取得的pCR率分别为55%和50%,同时在SCALE-1研究中观察到新辅助放化免联合手术治疗为患者带来良好的近期生存结果,2年OS率及DFS率分别为78%和63.8%。2 免疫治疗时代背景下放疗在晚期食管癌中的获益探索
在既往的研究中,有回顾性分析和小样本前瞻性研究显示在转移性食管癌的治疗中,放疗与化疗、靶向治疗联合具有治疗获益,但因循证医学证据级别有限,在当前的权威性指南,包括NCCN指南、CSCO食管癌诊疗指南及中国卫健委食管癌诊疗规范中,尚未确立放疗在晚期食管癌中的治疗地位。尽管如此,考虑到食管癌本身的疾病特征,在非手术治疗患者资料中,我们可以看到局部复发和持续进展始终为其治疗失败的主要模式[19],并且由于食管原发病灶的进展,往往导致患者吞咽功能下降、进食梗阻、出血或穿孔而危及生命,而放疗对食管癌的局部区域性控制和生活质量改善尤为重要。因此对于晚期食管癌,在其系统治疗基础上,放疗介入对生存的获益价值、主要的适应症人群选择等有必要进一步研究。
2.1 晚期食管癌系统性治疗联合局部放疗的可能获益人群
晚期食管癌即远处转移性食管癌,在食管癌确诊人群中占比较大,同时也是异质性较大的一部分患者群体。但总体来讲,最有可能在全身联合局部治疗中获益的亚组群体应该是病变相对局限的患者,如区域外淋巴结转移、寡转移或局部区域性复发者。
目前晚期食管癌是否涵盖区域外转移淋巴结尚有争议。AJCC分期系统强调非区域性淋巴结转移的影响,将非区域性淋巴结转移与内脏转移病例等同对待,归属于M1即Ⅳ期。在第6版AJCC分期中,胸上段癌转移到锁骨上淋巴结,下段转移到腹腔淋巴结为M1a期,其他远处转移为M1b期,更新到第7及第8版分期后,AJCC对于M分期的界定则不再细分M1a和M1b,而是直接将两种情况合并归于M1期,认为胸上段癌锁骨上转移和胸下段癌腹腔主动脉干淋巴结转移系远处转移。对于这一分期界定,也有学者持不同观点,国内外均有研究报道,锁骨上和腹腔动脉干淋巴结转移的预后优于实质脏器转移,认为胸段食管癌颈部淋巴结转移应归属于N而非M期。实际上,无论是否将区域外淋巴结转移归于M期,对于无实质脏器转移而仅有锁骨上或腹腔淋巴结转移的患者,在其整体治疗策略制定上将局部治疗放在一个更高的权重考量范围似乎更为合理。对于外科手术而言,三野淋巴结清扫技术日趋成熟,已有愈来愈多的锁骨上和腹腔动脉干淋巴结转移患者得到长期生存,单纯的区域外淋巴结转移已不再是手术的绝对禁忌。对于放疗,依托于现代精准技术,亦能将区域外淋巴结涵盖在合理的照射野内而不明显增加放射性损伤,因此在中国食管癌放射治疗指南[20]中,亦将胸段食管癌仅伴锁骨上或腹膜后淋巴结转移纳入根治性放化疗/放疗范畴。
除区域外淋巴结转移分期界定的争议外,寡转移是近年在食管癌研究中被越来越多提及的概念。食管癌是具有较高转移倾向的恶性肿瘤,据报道[21],发生转移时,约54.5%患者有3个及以上转移灶,23.9%患者有2个转移灶,21.6%患者只有1个转移灶,即有接近一半的患者在晚期阶段仍然为少转移灶(≤2个)状态,值得对其优选的治疗模式进一步探讨。对于“寡转移”的概念,学界一般较一致地认定其为介于局限性和多发转移之间的过渡状态,但对于转移涉及的转移灶和器官的数量尚无统一界定,既往最常用的定义是单个实体转移器官[22],或转移灶≤3个[23-24]或≤5个[25]。近期Kroese等[26]通过对97篇文献的分析重新界定了寡转移性食管癌,即1个区域外淋巴结转移或1个脏器≤3个转移灶被定义为食管癌的寡转移,具体到特定脏器为双叶肝转移灶≤3个,单侧肺转移灶≤3个,脑转移灶≤2个或双侧肾上腺转移。
2.2 晚期食管癌免疫联合放疗研究进展
免疫检查点抑制剂治疗在晚期食管癌的一线治疗地位确立后,也有学者开展了进一步联合放疗是否可为患者带来获益的探讨。目前亟需解决的问题是需要明确究竟哪一亚组群体的患者更可能在系统性治疗联合局部放疗的方案中获益。2024年公布的ESO-Shanghai 13研究[27]是一项开放标签的Ⅱ期多中心研究,来自中国6个研究中心的104例寡转移性食管鳞癌(原发灶可控,转移部位1~4个)患者被随机分组,分别接受全身治疗联合局部放疗(53例)和单纯全身治疗(51例),两个组别中,分别有20例(38%)和23例(45%)患者系统治疗选择的是以免疫治疗为基础的药物方案,研究的主要观察终点为PFS,从结果来看全身治疗联合局部放疗在患者的PFS、OS和局部控制方面均取得了显著的治疗获益(P<0.05),两个组别的中位无进展生存期(mPFS)分别为15.3和6.4个月(P<
0.0001 ),联合治疗组患者获益明显。从仅接受化疗的亚组患者来看,联合组与单纯全身治疗组的mPFS分别为12.0个月和3.4个月(P<0.001),在接受免疫治疗的(亚组)患者中,联合组与单药组的mPFS分别为18.0个月和9.6个月(P=0.044),即在免疫治疗基础上,联合局部治疗仍然能为患者带来显著获益,因此研究认为对于接受系统性治疗的寡转移性食管鳞癌,加入局部治疗可以显著提高患者无进展生存期。在2023年来自山东省肿瘤医院的一项回顾性分析[28]中,研究者选择了86例寡转移性食管癌(1~5个转移部位),接受的是放疗同步或序贯以PD-1为基础的全身治疗,观察到mPFS为15.2个月,1年、2年PFS率分别为61.4%和26.7%,生存数据与ESO-Shanghai 13研究极为相似。另Zhao等[29]还对一线化免失败的49例寡转移性食管鳞癌进行了二线伊立替康化疗联合卡瑞利珠单抗及低剂量局部放疗的尝试,研究得到的mPFS和mOS分别为6.9个月和12.8个月,全组的ORR为40.8%,DCR为75.5%,该治疗方案似乎可为这部分患者带来潜在的生存获益。从上述报道来看,寡转移性食管癌很可能是放疗联合化免治疗的一个重要适应证人群,但这样的治疗模式能否成为寡转移患者的标准治疗选择还需更多的研究尤其是Ⅲ期RCT研究的数据支持。除对寡转移性人群的探索外,在2023年来自天津市肿瘤医院的一项回顾性分析[30]中,研究者对127例转移性(45例,35.4%)和复发性(82例,64.6%)食管癌进行了免疫治疗联合/不联合放疗的观察,结果对于全组患者而言,联合或不联合放疗,患者的PFS和OS并无明显改善,两组生存数据无差异,但是对于局部区域性复发患者而言,联合组与单药组的mPFS分别为11.27个月和4.17个月(P=0.081),两组的mOS分别为19.48个月和7.69个月(P=0.026),联合组总生存状况明显优于单药组,并且联合组更多患者吞咽困难症状得到了改善(64% vs. 30%,P=0.033)。在另一项回顾性研究[31]中,50例晚期食管癌患者接受了以信迪利单抗为基础的治疗,其中24例联合了局部放疗,联合组相较于单纯药物治疗组具有更高的CR率(25% vs. 3.8%,P=0.031)和1年OS率(85.9% vs. 53.2%,P=0.020),但该项研究涵盖了转移性和复发性食管癌,且有21例(42%)患者为非区域性淋巴结转移,放疗联合免疫治疗究竟在哪一部分患者中更具有获益价值其实并未可知。从有限的研究报道来看,在未经区分的晚期食管癌人群中,在系统治疗的基础上联合局部放疗是否能进一步带来生存获益仍不明确,似乎局部区域性复发患者更易于在联合治疗模式中获益,而单纯区域外淋巴结转移患者优选的治疗模式仍缺乏研究报道。
在安全性方面,多数研究认为在全身治疗基础上联合局部放疗不明显增加重度不良反应发生率,如在ESO-Shanghai 13研究中,与单纯全身治疗组相比,联合治疗组仅增加了1~2级急性食管炎发生率(19% vs. 2%,P=0.036),而两组3级及以上的治疗相关不良事件发生率相近(47% vs. 41%,P=0.538),且最常见不良反应为白细胞减少和中性粒细胞减少,均为临床可控的安全性事件。为规避不良事件的发生,在联合治疗前亦应积极评估患者的风险因素,以预判或降低治疗过程中的并发症风险。
3 总结与展望
晚期食管癌人群基数大,异质性高,疗效不佳,是限制生存率提高的重要因素。化疗联合免疫治疗已成为晚期食管癌的标准一线治疗方案,但仍不足以满足临床治疗需求。在系统性治疗基础上联合局部治疗,寻求新的综合治疗模式是提高疗效的重要研究方向。寡转移性食管癌及局部区域复发性食管癌可能是全身治疗联合局部放疗的获益人群。这一联合模式能否成为标准治疗选择、放疗的加入时机及合理的剂量范围、分割模式等仍需临床进一步探索。
Competing interests: The authors declare that they have no competing interests.作者贡献:王志强:论文构思、撰写及修改东帅:文献收集、协助论文撰写李梦龙:数据整理、论文构思梁锐:论文设计和指导 -
[1] Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers[J]. Nat Med, 2020, 26(4): 566-576. doi: 10.1038/s41591-020-0805-8
[2] 尹竺晟, 梁新军. MSS型结直肠癌免疫联合治疗研究进展[J]. 肿瘤防治研究, 2022, 49(9): 977-981. doi: 10.3971/j.issn.1000-8578.2022.22.0453 Yin ZC, Liang XJ. Research Progress on Combined Immunotherapy for Microsatellite Stable Colorectal Cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(9): 977-981. doi: 10.3971/j.issn.1000-8578.2022.22.0453
[3] Marabelle A, Le DT, Ascierto PA, et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the PhaseⅡKEYNOTE-158 Study[J]. J Clin Oncol, 2020, 38(1): 1-10. doi: 10.1200/JCO.19.02105
[4] Goodman AM, Sokol ES, Frampton GM, et al. Microsatellite-Stable Tumors with High Mutational Burden Benefit from Immunotherapy[J]. Cancer Immunol Res, 2019, 7(10): 1570-1573. doi: 10.1158/2326-6066.CIR-19-0149
[5] Samstein RM, Lee CH, Shoushtari AN, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types[J]. Nat Genet, 2019, 51(2): 202-206. doi: 10.1038/s41588-018-0312-8
[6] Fabrizio DA, George TJ Jr, Dunne RF, et al. Beyond microsatellite testing: Assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition[J]. J Gastrointest Oncol, 2018, 9(4): 610-617. doi: 10.21037/jgo.2018.05.06
[7] Wang C, Fakih M. Targeting MSS colorectal cancer with immunotherapy: are we turning the corner?[J]. Expert Opin Biol Ther, 2021, 21(10): 1347-1357. doi: 10.1080/14712598.2021.1933940
[8] Mo S, Ma X, Li Y, et al. Somatic POLE exonuclease domain mutations elicit enhanced intratumoral immune responses in stage Ⅱ colorectal cancer[J]. J Immunother Cancer, 2020, 8(2): e000881. doi: 10.1136/jitc-2020-000881
[9] Rizvi NA, Hellmann MD, Snyder A, et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer[J]. Science, 2015, 348(6230): 124-128. doi: 10.1126/science.aaa1348
[10] Wang F, Zhao Q, Wang YN, et al. Evaluation of POLE and POLD1 Mutations as Biomarkers for Immunotherapy Outcomes Across Multiple Cancer Types[J]. JAMA Oncol, 2019, 5(10): 1504-1506. doi: 10.1001/jamaoncol.2019.2963
[11] Mehnert JM, Panda A, Zhong H, et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer[J]. J Clin Invest, 2016, 126(6): 2334-2340. doi: 10.1172/JCI84940
[12] Gong J, Wang C, Lee PP, et al. Response to PD-1 blockade in microsatellite stable metastatic colorectal cancer harboring a POLE mutation[J]. J Natl Compr Canc Netw, 2017, 15(2): 142-147. doi: 10.6004/jnccn.2017.0016
[13] Wang C, Gong J, Tu TY, et al. Immune profiling of microsatellite instability-high and polymerase ε (POLE)-mutated metastatic colorectal tumors identifies predictors of response to anti-PD-1 therapy[J]. J Gastrointest Oncol, 2018, 9(3): 404-415. doi: 10.21037/jgo.2018.01.09
[14] Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer[J]. Nat Med, 2015, 21(11): 1350-1356. doi: 10.1038/nm.3967
[15] Becht E, de Reyniès A, Giraldo NA, et al. Immune and stromal classification of colorectal cancer is associated with molecular subtypes and relevant for precision immunotherapy[J]. Clin Cancer Res, 2016, 22(16): 4057-4066. doi: 10.1158/1078-0432.CCR-15-2879
[16] Morris VK, Parseghian CM, Escano M, et al. PhaseⅠ/Ⅱ trial of encorafenib, cetuximab, and nivolumab in patients with microsatellite stable, BRAFV600E metastatic colorectal cancer[J]. J Clin Oncol, 2022, 40(4_suppl): 12. doi: 10.1200/JCO.2022.40.4_suppl.012
[17] Angelova M, Charoentong P, Hackl H, et al. Characterization of the immunophenotypes and antigenomes of colorectal cancers reveals distinct tumor escape mechanisms and novel targets for immunotherapy[J]. Genome Biol, 2015, 16(1): 64. doi: 10.1186/s13059-015-0620-6
[18] Sarshekeh AM, Lam M, Zorrilla IR, et al. Consensus molecular subtype (CMS) as a novel integral biomarker in colorectal cancer: A phase Ⅱ trial of bintrafusp alfa in CMS4 metastatic CRC[J]. J Clin Oncol, 2020, 38(15_suppl): 4084. doi: 10.1200/JCO.2020.38.15_suppl.4084
[19] Español-Rego M, Alonso V, Aparicio J, et al. AVEVAC: A phase Ⅰ-Ⅱ trial with avelumab plus autologous dendritic cell (ADC) vaccine in pre-treated mismatch repair-proficient (MSS) metastatic colorectal cancer (mCRC) patients (GEMCAD 16-02)[J]. Ann Oncol, 2018, 29(suppl_8): viii150-viii204.
[20] Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma[J]. N Engl J Med, 2005, 352(10): 997-1003. doi: 10.1056/NEJMoa043331
[21] Morano F, Corallo S, Niger M, et al. Temozolomide and irinotecan (TEMIRI regimen) as salvage treatment of irinotecan-sensitive advanced colorectal cancer patients bearing MGMT methylation[J]. Ann Oncol, 2018, 29(8): 1800-1806. doi: 10.1093/annonc/mdy197
[22] Morano F, Raimondi A, Pagani F, et al. Temozolomide Followed by Combination With Low-Dose Ipilimumab and Nivolumab in Patients With Microsatellite-Stable, O(6)-Methylguanine-DNA Methyltransferase-Silenced Metastatic Colorectal Cancer: The MAYA Trial[J]. J Clin Oncol, 2022, 40(14): 1562-1573. doi: 10.1200/JCO.21.02583
[23] Gandini S, Massi D, Mandala M. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: A systematic review and meta-analysis[J]. Crit Rev Oncol Hematol, 2016, 100: 88-98. doi: 10.1016/j.critrevonc.2016.02.001
[24] del Rio ML, Buhler L, Gibbons C, et al. PD-1/PD-L1, PD-1/PD-L2, and other co-inhibitory signaling pathways in transplantation[J]. Transpl Int, 2008, 21(11): 1015-1028.
[25] Kulangara K, Zhang N, Corigliano E, et al. Clinical utility of the combined positive score for programmed death ligand-1 expression and the approval of pembrolizumab for treatment of gastric cancer[J]. Arch Pathol Labor Med, 2019, 143(3): 330-337. doi: 10.5858/arpa.2018-0043-OA
[26] Andre'T, Overman M, Lonardi S, et al. Analysis of tumor PDL1 expression and biomarkers in relation to clinical activityin patients (pts) with deficient DNA mismatch repair (dMMR)/high microsatellite instability (MSI-H) metastatic colorectal cancer (mCRC) treated with nivolumab (NIVO) tipilimumab (IPI): CheckMate 142[J]. Ann Oncol, 2017, 28(Suppl_ 5): v158-v208.
[27] Llosa NJ, Luber B, Tam AJ, et al. Intratumoral adaptive immunosuppression and type 17 immunity in mismatch repair proficient colorectal tumors[J]. Clin Cancer Res, 2019, 25(17): 5250-5259. doi: 10.1158/1078-0432.CCR-19-0114
[28] Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle[J]. Immunity, 2013, 39(1): 1-10. doi: 10.1016/j.immuni.2013.07.012
[29] McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade[J]. Science, 2016, 351(6280): 1463-1469. doi: 10.1126/science.aaf1490
[30] Chan TA, Wolchok JD, Snyder A. Genetic Basis for Clinical Response to CTLA-4 Blockade in Melanoma[J]. N Engl J Med, 2015, 373(20): 1984. doi: 10.1056/NEJMc1508163
[31] Łuksza M, Riaz N, Makarov V, et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy[J]. Nature, 2017, 551(7681): 517-520. doi: 10.1038/nature24473
[32] Kidman J, Principe N, Watson M, et al. Characteristics of TCR Repertoire Associated With Successful Immune Checkpoint Therapy Responses[J]. Front Immunol, 2020, 11: 587014. doi: 10.3389/fimmu.2020.587014
[33] Schrama D, Ritter C, Becker JC. T cell receptor repertoire usage in cancer as a surrogate marker for immune responses[J]. Semin Immunopathol, 2017, 39(3): 255-268. doi: 10.1007/s00281-016-0614-9
[34] Chen YT, Hsu HC, Lee YS, et al. Longitudinal High-Throughput Sequencing of the T-Cell Receptor Repertoire Reveals Dynamic Change and Prognostic Significance of Peripheral Blood TCR Diversity in Metastatic Colorectal Cancer During Chemotherapy[J]. Front Immunol, 2022, 12: 743448. doi: 10.3389/fimmu.2021.743448
[35] Tamura K, Hazama S, Yamaguchi R, et al. Characterization of the T cell repertoire by deep T cell receptor sequencing in tissues and blood from patients with advanced colorectal cancer[J]. Oncol Lett, 2016, 11(6): 3643-3649. doi: 10.3892/ol.2016.4465
[36] Masucci GV, Cesano A, Hawtin R, et al. Validation of biomarkers to predict response to immunotherapy in cancer: Volume I-Pre-analytical and analytical validation[J]. J Immunother Cancer, 2016, 4: 76. doi: 10.1186/s40425-016-0178-1
[37] Wimberly H, Brown JR, Schalper K, et al. PD-L1 Expression Correlates with Tumor-Infiltrating Lymphocytes and Response to Neoadjuvant Chemotherapy in Breast Cancer[J]. Cancer Immunol Res, 2015, 3(4): 326-332. doi: 10.1158/2326-6066.CIR-14-0133
[38] Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer[J]. Nature, 2014, 515(7528): 558-562. doi: 10.1038/nature13904
[39] Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance[J]. Nature, 2014, 515(7528): 568-571. doi: 10.1038/nature13954
[40] Nowicki TS, Akiyama R, Huang RR, et al. Infiltration of CD8 T Cells and Expression of PD-1 and PD-L1 in Synovial Sarcoma. Cancer Immunol Res, 2017, 5(2): 118-126. doi: 10.1158/2326-6066.CIR-16-0148
[41] Ogura A, Akiyoshi T, Yamamoto N, et al. Pattern of programmed cell death-ligand 1 expression and CD8-positive T-cell infiltration before and after chemoradiotherapy in rectal cancer[J]. Eur J Cancer, 2018, 91: 11-20. doi: 10.1016/j.ejca.2017.12.005
[42] Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the 'Immunoscore' in the classification of malignant tumours[J]. J Pathol, 2014, 232(2): 199-209. doi: 10.1002/path.4287
[43] Picard E, Verschoor CP, Ma GW, et al. Relationships Between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer[J]. Front Immunol, 2020, 11: 369. doi: 10.3389/fimmu.2020.00369
[44] Angell HK, Bruni D, Barrett JC, et al. The Immunoscore: Colon Cancer and Beyond[J]. Clin Cancer Res, 2020, 26(2): 332-339. doi: 10.1158/1078-0432.CCR-18-1851
[45] Malka D, Lièvre A, André T, et al. Immune scores in colorectal cancer: Where are we?[J]. Eur J Cancer, 2020, 140: 105-118. doi: 10.1016/j.ejca.2020.08.024
[46] Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease[J]. Nat Rev Immunol, 2009, 9(5): 313-323. doi: 10.1038/nri2515
[47] Caruso R, Lo BC, Núñez G. Host-microbiota interactions in inflammatory bowel disease[J]. Nat Rev Immunol, 2020, 20(7): 411-426. doi: 10.1038/s41577-019-0268-7
[48] Peng Z, Cheng S, Kou Y, et al. The Gut Microbiome Is Associated with Clinical Response to Anti-PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer[J]. Cancer Immunol Res, 2020, 8(10): 1251-1261. doi: 10.1158/2326-6066.CIR-19-1014
[49] 王艺洁, 张港玮, 徐超, 等. 免疫检查点抑制剂治疗结直肠癌的疗效及肠道菌群对其疗效影响的研究进展[J]. 肿瘤防治研究, 2022, 49(11): 1184-1189. doi: 10.3971/j.issn.1000-8578.2022.22.0429 Wang YJ, Zhang GW, Xu C, et al. Research Progress on Effects of Gut Microbiome on Efficacy of Immune Checkpoint Inhibitors in Colorectal Cancer[J]. Zhong Liu Fang Zhi Yan Jiu, 2022, 49(11): 1184-1189. doi: 10.3971/j.issn.1000-8578.2022.22.0429
[50] Tanoue T, Morita S, Plichta DR, et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity[J]. Nature, 2019, 565(7741): 600-605. doi: 10.1038/s41586-019-0878-z
[51] Gao Y, Bi D, Xie R, et al. Fusobacterium nucleatum enhances the efficacy of PD-L1 blockade in colorectal cancer[J]. Signal Transduct Target Ther, 2021, 6(1): 398. doi: 10.1038/s41392-021-00795-x
[52] Wang C, Chevalier D, Saluja J, et al. Regorafenib and Nivolumab or Pembrolizumab Combination and Circulating Tumor DNA Response Assessment in Refractory Microsatellite Stable Colorectal Cancer[J]. Oncologist, 2020, 25(8): e1188-e1194. doi: 10.1634/theoncologist.2020-0161
计量
- 文章访问数: 2083
- HTML全文浏览量: 715
- PDF下载量: 1678